Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring Nonlinear Dynamics in Intertidal Water Waves: Insights from Fourth-Order Boussinesq Equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256895" target="_blank" >RIV/61989100:27740/24:10256895 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2075-1680/13/11/793" target="_blank" >https://www.mdpi.com/2075-1680/13/11/793</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/axioms13110793" target="_blank" >10.3390/axioms13110793</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring Nonlinear Dynamics in Intertidal Water Waves: Insights from Fourth-Order Boussinesq Equations

  • Popis výsledku v původním jazyce

    The fourth-order nonlinear Boussinesq water wave equation, which describes the propagation of long waves in the intertidal zone, is investigated in this study. The exact wave patterns of the equation were computed using the tanh method. As stability decreased, soliton wave structures were derived using similarity transformations. Numerical simulations supported these findings. The tanh method introduced a Galilean modification, leading to the discovery of several new exact solutions. Subsequently, the fourth-order nonlinear Boussinesq wave equation was transformed into a planar dynamical system using the travelling wave transformation. The quasi-periodic, cyclical, and nonlinear behaviors of the analyzed equation were particularly examined. Numerical simulations revealed that varying the physical parameters impacts the system&apos;s nonlinear behavior. Graphs represent all possible examples of phase portraits in terms of these parameters. Furthermore, the study was proven to be highly beneficial for addressing issues such as shock waves and highly active travelling wave processes. Sensitivity analysis theory and the Lyapunov exponent were employed, offering a wide variety of linear periodic and first-frequency periodic characteristics. Sensitivity analysis and multistability analysis of the Boussinesq water wave equation were thoroughly investigated.

  • Název v anglickém jazyce

    Exploring Nonlinear Dynamics in Intertidal Water Waves: Insights from Fourth-Order Boussinesq Equations

  • Popis výsledku anglicky

    The fourth-order nonlinear Boussinesq water wave equation, which describes the propagation of long waves in the intertidal zone, is investigated in this study. The exact wave patterns of the equation were computed using the tanh method. As stability decreased, soliton wave structures were derived using similarity transformations. Numerical simulations supported these findings. The tanh method introduced a Galilean modification, leading to the discovery of several new exact solutions. Subsequently, the fourth-order nonlinear Boussinesq wave equation was transformed into a planar dynamical system using the travelling wave transformation. The quasi-periodic, cyclical, and nonlinear behaviors of the analyzed equation were particularly examined. Numerical simulations revealed that varying the physical parameters impacts the system&apos;s nonlinear behavior. Graphs represent all possible examples of phase portraits in terms of these parameters. Furthermore, the study was proven to be highly beneficial for addressing issues such as shock waves and highly active travelling wave processes. Sensitivity analysis theory and the Lyapunov exponent were employed, offering a wide variety of linear periodic and first-frequency periodic characteristics. Sensitivity analysis and multistability analysis of the Boussinesq water wave equation were thoroughly investigated.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Axioms

  • ISSN

    2075-1680

  • e-ISSN

    2075-1680

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    001366767700001

  • EID výsledku v databázi Scopus