ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F13%3A33145223" target="_blank" >RIV/61989592:15110/13:33145223 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cell.2013.10.043" target="_blank" >http://dx.doi.org/10.1016/j.cell.2013.10.043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cell.2013.10.043" target="_blank" >10.1016/j.cell.2013.10.043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA
Popis výsledku v původním jazyce
ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergonucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe'' even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecula
Název v anglickém jazyce
ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA
Popis výsledku anglicky
ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergonucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe'' even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecula
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FD - Onkologie a hematologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED0030%2F01%2F01" target="_blank" >ED0030/01/01: Biomedicína pro regionální rozvoj a lidské zdroje</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cell
ISSN
0092-8674
e-ISSN
—
Svazek periodika
155
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1088-1103
Kód UT WoS článku
000327500600013
EID výsledku v databázi Scopus
—