High speed of fork progression induces DNA replication stress and genomic instability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F18%3A73587602" target="_blank" >RIV/61989592:15110/18:73587602 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41586-018-0261-5" target="_blank" >https://www.nature.com/articles/s41586-018-0261-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-018-0261-5" target="_blank" >10.1038/s41586-018-0261-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High speed of fork progression induces DNA replication stress and genomic instability
Popis výsledku v původním jazyce
Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle(1). Replication stress induces fork stalling and fuels genome instability(2). The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer(2). Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl) ation (PARylation) and the PCNA interactor p21(Cip1) (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in) stability and rational cancer treatment.
Název v anglickém jazyce
High speed of fork progression induces DNA replication stress and genomic instability
Popis výsledku anglicky
Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle(1). Replication stress induces fork stalling and fuels genome instability(2). The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer(2). Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl) ation (PARylation) and the PCNA interactor p21(Cip1) (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in) stability and rational cancer treatment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature
ISSN
0028-0836
e-ISSN
—
Svazek periodika
559
Číslo periodika v rámci svazku
7713
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
279-284
Kód UT WoS článku
000438240900061
EID výsledku v databázi Scopus
2-s2.0-85049788125