Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian Multiple Hypotheses Testing in Compositional Analysis of Untargeted Metabolomic Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F20%3A73595583" target="_blank" >RIV/61989592:15110/20:73595583 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/20:73595583

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0003267019313492" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003267019313492</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aca.2019.11.006" target="_blank" >10.1016/j.aca.2019.11.006</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian Multiple Hypotheses Testing in Compositional Analysis of Untargeted Metabolomic Data

  • Popis výsledku v původním jazyce

    Clinical metabolomics aims at finding statistically significant differences in metabolic statuses of patient and control groups with the intention of understanding pathobiochemical processes and identification of clinically useful biomarkers of particular diseases. After the raw measurements are integrated and pre-processed as intensities of chromatographic peaks, the differences between controls and patients are evaluated by both univariate and multivariate statistical methods. The traditional univariate approach relies on t-tests (or their nonparametric alternatives) and the results from multiple testing are misleadingly compared merely by p-values using the so-called volcano plot. This paper proposes a Bayesian counterpart to the widespread univariate analysis, taking into account the compositional character of a metabolome. Since each metabolome is a collection of some small-molecule metabolites in a biological material, the relative structure of metabolomic data, which is inherently contained in ratios between metabolites, is of the main interest. Therefore, a proper choice of logratio coordinates is an essential step for any statistical analysis of such data. In addition, a concept of b-values is introduced together with a Bayesian version of the volcano plot incorporating distance levels of the posterior highest density intervals from zero. The theoretical background of the contribution is illustrated using two data sets containing samples of patients suffering from 3-hydroxy-3-methylglutaryl-CoA lyase deficiency and medium-chain acyl-CoA dehydrogenase deficiency. To evaluate the stability of the proposed method as well as the benefits of the compositional approach, two simulations designed to mimic a loss of samples and a systematical measurement error, respectively, are added.

  • Název v anglickém jazyce

    Bayesian Multiple Hypotheses Testing in Compositional Analysis of Untargeted Metabolomic Data

  • Popis výsledku anglicky

    Clinical metabolomics aims at finding statistically significant differences in metabolic statuses of patient and control groups with the intention of understanding pathobiochemical processes and identification of clinically useful biomarkers of particular diseases. After the raw measurements are integrated and pre-processed as intensities of chromatographic peaks, the differences between controls and patients are evaluated by both univariate and multivariate statistical methods. The traditional univariate approach relies on t-tests (or their nonparametric alternatives) and the results from multiple testing are misleadingly compared merely by p-values using the so-called volcano plot. This paper proposes a Bayesian counterpart to the widespread univariate analysis, taking into account the compositional character of a metabolome. Since each metabolome is a collection of some small-molecule metabolites in a biological material, the relative structure of metabolomic data, which is inherently contained in ratios between metabolites, is of the main interest. Therefore, a proper choice of logratio coordinates is an essential step for any statistical analysis of such data. In addition, a concept of b-values is introduced together with a Bayesian version of the volcano plot incorporating distance levels of the posterior highest density intervals from zero. The theoretical background of the contribution is illustrated using two data sets containing samples of patients suffering from 3-hydroxy-3-methylglutaryl-CoA lyase deficiency and medium-chain acyl-CoA dehydrogenase deficiency. To evaluate the stability of the proposed method as well as the benefits of the compositional approach, two simulations designed to mimic a loss of samples and a systematical measurement error, respectively, are added.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ANALYTICA CHIMICA ACTA

  • ISSN

    0003-2670

  • e-ISSN

  • Svazek periodika

    1097

  • Číslo periodika v rámci svazku

    FEB

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    49-61

  • Kód UT WoS článku

    000505562300004

  • EID výsledku v databázi Scopus

    2-s2.0-85075895947