Bayesian Multiple Hypotheses Testing in Compositional Analysis of Untargeted Metabolomic Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F20%3A73595583" target="_blank" >RIV/61989592:15110/20:73595583 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/20:73595583
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0003267019313492" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003267019313492</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2019.11.006" target="_blank" >10.1016/j.aca.2019.11.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Multiple Hypotheses Testing in Compositional Analysis of Untargeted Metabolomic Data
Popis výsledku v původním jazyce
Clinical metabolomics aims at finding statistically significant differences in metabolic statuses of patient and control groups with the intention of understanding pathobiochemical processes and identification of clinically useful biomarkers of particular diseases. After the raw measurements are integrated and pre-processed as intensities of chromatographic peaks, the differences between controls and patients are evaluated by both univariate and multivariate statistical methods. The traditional univariate approach relies on t-tests (or their nonparametric alternatives) and the results from multiple testing are misleadingly compared merely by p-values using the so-called volcano plot. This paper proposes a Bayesian counterpart to the widespread univariate analysis, taking into account the compositional character of a metabolome. Since each metabolome is a collection of some small-molecule metabolites in a biological material, the relative structure of metabolomic data, which is inherently contained in ratios between metabolites, is of the main interest. Therefore, a proper choice of logratio coordinates is an essential step for any statistical analysis of such data. In addition, a concept of b-values is introduced together with a Bayesian version of the volcano plot incorporating distance levels of the posterior highest density intervals from zero. The theoretical background of the contribution is illustrated using two data sets containing samples of patients suffering from 3-hydroxy-3-methylglutaryl-CoA lyase deficiency and medium-chain acyl-CoA dehydrogenase deficiency. To evaluate the stability of the proposed method as well as the benefits of the compositional approach, two simulations designed to mimic a loss of samples and a systematical measurement error, respectively, are added.
Název v anglickém jazyce
Bayesian Multiple Hypotheses Testing in Compositional Analysis of Untargeted Metabolomic Data
Popis výsledku anglicky
Clinical metabolomics aims at finding statistically significant differences in metabolic statuses of patient and control groups with the intention of understanding pathobiochemical processes and identification of clinically useful biomarkers of particular diseases. After the raw measurements are integrated and pre-processed as intensities of chromatographic peaks, the differences between controls and patients are evaluated by both univariate and multivariate statistical methods. The traditional univariate approach relies on t-tests (or their nonparametric alternatives) and the results from multiple testing are misleadingly compared merely by p-values using the so-called volcano plot. This paper proposes a Bayesian counterpart to the widespread univariate analysis, taking into account the compositional character of a metabolome. Since each metabolome is a collection of some small-molecule metabolites in a biological material, the relative structure of metabolomic data, which is inherently contained in ratios between metabolites, is of the main interest. Therefore, a proper choice of logratio coordinates is an essential step for any statistical analysis of such data. In addition, a concept of b-values is introduced together with a Bayesian version of the volcano plot incorporating distance levels of the posterior highest density intervals from zero. The theoretical background of the contribution is illustrated using two data sets containing samples of patients suffering from 3-hydroxy-3-methylglutaryl-CoA lyase deficiency and medium-chain acyl-CoA dehydrogenase deficiency. To evaluate the stability of the proposed method as well as the benefits of the compositional approach, two simulations designed to mimic a loss of samples and a systematical measurement error, respectively, are added.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ANALYTICA CHIMICA ACTA
ISSN
0003-2670
e-ISSN
—
Svazek periodika
1097
Číslo periodika v rámci svazku
FEB
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
49-61
Kód UT WoS článku
000505562300004
EID výsledku v databázi Scopus
2-s2.0-85075895947