Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Chemical complexity challenge: Is multi-instance machine learning a solution?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F24%3A73629898" target="_blank" >RIV/61989592:15110/24:73629898 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1698" target="_blank" >https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1698</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/wcms.1698" target="_blank" >10.1002/wcms.1698</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Chemical complexity challenge: Is multi-instance machine learning a solution?

  • Popis výsledku v původním jazyce

    Molecules are complex dynamic objects that can exist in different molecular forms (conformations, tautomers, stereoisomers, protonation states, etc.) and often it is not known which molecular form is responsible for observed physicochemical and biological properties of a given molecule. This raises the problem of the selection of the correct molecular form for machine learning modeling of target properties. The same problem is common to biological molecules (RNA, DNA, proteins)-long sequences where only key segments, which often cannot be located precisely, are involved in biological functions. Multi-instance machine learning (MIL) is an efficient approach for solving problems where objects under study cannot be uniquely represented by a single instance, but rather by a set of multiple alternative instances. Multi-instance learning was formalized in 1997 and motivated by the problem of conformation selection in drug activity prediction tasks. Since then MIL has found a lot of applications in various domains, such as information retrieval, computer vision, signal processing, bankruptcy prediction, and so on. In the given review we describe the MIL framework and its applications to the tasks associated with ambiguity in the representation of small and biological molecules in chemoinformatics and bioinformatics. We have collected examples that demonstrate the advantages of MIL over the traditional single-instance learning (SIL) approach.

  • Název v anglickém jazyce

    Chemical complexity challenge: Is multi-instance machine learning a solution?

  • Popis výsledku anglicky

    Molecules are complex dynamic objects that can exist in different molecular forms (conformations, tautomers, stereoisomers, protonation states, etc.) and often it is not known which molecular form is responsible for observed physicochemical and biological properties of a given molecule. This raises the problem of the selection of the correct molecular form for machine learning modeling of target properties. The same problem is common to biological molecules (RNA, DNA, proteins)-long sequences where only key segments, which often cannot be located precisely, are involved in biological functions. Multi-instance machine learning (MIL) is an efficient approach for solving problems where objects under study cannot be uniquely represented by a single instance, but rather by a set of multiple alternative instances. Multi-instance learning was formalized in 1997 and motivated by the problem of conformation selection in drug activity prediction tasks. Since then MIL has found a lot of applications in various domains, such as information retrieval, computer vision, signal processing, bankruptcy prediction, and so on. In the given review we describe the MIL framework and its applications to the tasks associated with ambiguity in the representation of small and biological molecules in chemoinformatics and bioinformatics. We have collected examples that demonstrate the advantages of MIL over the traditional single-instance learning (SIL) approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30107 - Medicinal chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Wiley Interdisciplinary Reviews-Computational Molecular Science

  • ISSN

    1759-0876

  • e-ISSN

    1759-0884

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    27

  • Strana od-do

    "e1698"

  • Kód UT WoS článku

    001120010200001

  • EID výsledku v databázi Scopus

    2-s2.0-85177824629