Chemical complexity challenge: Is multi-instance machine learning a solution?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F24%3A73629898" target="_blank" >RIV/61989592:15110/24:73629898 - isvavai.cz</a>
Výsledek na webu
<a href="https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1698" target="_blank" >https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/wcms.1698" target="_blank" >10.1002/wcms.1698</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chemical complexity challenge: Is multi-instance machine learning a solution?
Popis výsledku v původním jazyce
Molecules are complex dynamic objects that can exist in different molecular forms (conformations, tautomers, stereoisomers, protonation states, etc.) and often it is not known which molecular form is responsible for observed physicochemical and biological properties of a given molecule. This raises the problem of the selection of the correct molecular form for machine learning modeling of target properties. The same problem is common to biological molecules (RNA, DNA, proteins)-long sequences where only key segments, which often cannot be located precisely, are involved in biological functions. Multi-instance machine learning (MIL) is an efficient approach for solving problems where objects under study cannot be uniquely represented by a single instance, but rather by a set of multiple alternative instances. Multi-instance learning was formalized in 1997 and motivated by the problem of conformation selection in drug activity prediction tasks. Since then MIL has found a lot of applications in various domains, such as information retrieval, computer vision, signal processing, bankruptcy prediction, and so on. In the given review we describe the MIL framework and its applications to the tasks associated with ambiguity in the representation of small and biological molecules in chemoinformatics and bioinformatics. We have collected examples that demonstrate the advantages of MIL over the traditional single-instance learning (SIL) approach.
Název v anglickém jazyce
Chemical complexity challenge: Is multi-instance machine learning a solution?
Popis výsledku anglicky
Molecules are complex dynamic objects that can exist in different molecular forms (conformations, tautomers, stereoisomers, protonation states, etc.) and often it is not known which molecular form is responsible for observed physicochemical and biological properties of a given molecule. This raises the problem of the selection of the correct molecular form for machine learning modeling of target properties. The same problem is common to biological molecules (RNA, DNA, proteins)-long sequences where only key segments, which often cannot be located precisely, are involved in biological functions. Multi-instance machine learning (MIL) is an efficient approach for solving problems where objects under study cannot be uniquely represented by a single instance, but rather by a set of multiple alternative instances. Multi-instance learning was formalized in 1997 and motivated by the problem of conformation selection in drug activity prediction tasks. Since then MIL has found a lot of applications in various domains, such as information retrieval, computer vision, signal processing, bankruptcy prediction, and so on. In the given review we describe the MIL framework and its applications to the tasks associated with ambiguity in the representation of small and biological molecules in chemoinformatics and bioinformatics. We have collected examples that demonstrate the advantages of MIL over the traditional single-instance learning (SIL) approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30107 - Medicinal chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wiley Interdisciplinary Reviews-Computational Molecular Science
ISSN
1759-0876
e-ISSN
1759-0884
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
"e1698"
Kód UT WoS článku
001120010200001
EID výsledku v databázi Scopus
2-s2.0-85177824629