Linguistic approximation of values close to the gain/loss threshold
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F17%3A73581327" target="_blank" >RIV/61989592:15210/17:73581327 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linguistic approximation of values close to the gain/loss threshold
Popis výsledku v původním jazyce
Linguistic approximation (LA) is a natural last step of linguistic fuzzy modelling, providing linguistic labels (with their meaning known to the decision makers and understood well by them). Linguistic approximation techniques are based on approximation and hence the nature of the approximated output of mathematical model can be altered a bit by the application of these methods. LA can be considered beneficial in linguistic fuzzy modelling, as long as the interpretability and understandability of the provided linguistic outputs outweighs the possible loss/distortion of information. In many cases the distortion of information might be small and as such completely acceptable. Recently, however, Stoklasa and Talášek (2015) pointed out that when specific thresholds are of importance in the decision-making situation (e.g. the border between gains and losses), LA can distort the outcome of the decision-making situation by providing a loss label for a gain and vice-versa. In this paper, we investigate the phenomenon under different linguistic scales used for the approximation and provide a thorough discussion of this phenomenon in the context of linguistic approximation.
Název v anglickém jazyce
Linguistic approximation of values close to the gain/loss threshold
Popis výsledku anglicky
Linguistic approximation (LA) is a natural last step of linguistic fuzzy modelling, providing linguistic labels (with their meaning known to the decision makers and understood well by them). Linguistic approximation techniques are based on approximation and hence the nature of the approximated output of mathematical model can be altered a bit by the application of these methods. LA can be considered beneficial in linguistic fuzzy modelling, as long as the interpretability and understandability of the provided linguistic outputs outweighs the possible loss/distortion of information. In many cases the distortion of information might be small and as such completely acceptable. Recently, however, Stoklasa and Talášek (2015) pointed out that when specific thresholds are of importance in the decision-making situation (e.g. the border between gains and losses), LA can distort the outcome of the decision-making situation by providing a loss label for a gain and vice-versa. In this paper, we investigate the phenomenon under different linguistic scales used for the approximation and provide a thorough discussion of this phenomenon in the context of linguistic approximation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
35th International Conference Mathematical Methods in Economics MME 2017 Conference Proceedings
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
726-731
Název nakladatele
Gaudeamus
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—