Distance-based linguistic approximation methods: graphical analysis and numerical experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F17%3A73581328" target="_blank" >RIV/61989592:15210/17:73581328 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distance-based linguistic approximation methods: graphical analysis and numerical experiments
Popis výsledku v původním jazyce
Linguistic approximation (LA) as a tool for converting the outputs of mathematical models into linguistic terms or expressions is a crucial tool in linguistic fuzzy modelling. The success of the models depends significantly on the ability of the users of these models to understand well enough the outputs provided by the models. Linguistic approximation offers a natural language for conveying information. On the other hand it is still an approximation of the original results and as such, there is information distortion taking place. In this paper we study several distance-based linguistic approximation methods and analyse their performance in terms of LA for Mamdani-type outputs of mathematical models using a numerical experiment. We provide graphical summaries of the performance of these distance measures in LA as well as the frequencies of choosing specific linguistic labels considered to be the values of an extended linguistic scale. We discuss the differences in the focus of these methods and its implications for their usability. The paper strives to increase understanding of the LA methods and to contribute to the creation of a LA road map for practical use.
Název v anglickém jazyce
Distance-based linguistic approximation methods: graphical analysis and numerical experiments
Popis výsledku anglicky
Linguistic approximation (LA) as a tool for converting the outputs of mathematical models into linguistic terms or expressions is a crucial tool in linguistic fuzzy modelling. The success of the models depends significantly on the ability of the users of these models to understand well enough the outputs provided by the models. Linguistic approximation offers a natural language for conveying information. On the other hand it is still an approximation of the original results and as such, there is information distortion taking place. In this paper we study several distance-based linguistic approximation methods and analyse their performance in terms of LA for Mamdani-type outputs of mathematical models using a numerical experiment. We provide graphical summaries of the performance of these distance measures in LA as well as the frequencies of choosing specific linguistic labels considered to be the values of an extended linguistic scale. We discuss the differences in the focus of these methods and its implications for their usability. The paper strives to increase understanding of the LA methods and to contribute to the creation of a LA road map for practical use.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
35th International Conference Mathematical Methods in Economics MME 2017 Conference Proceedings
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
777-782
Název nakladatele
Gaudeamus
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—