Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Time Series Analysis by Fuzzy Linear Regression

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F22%3A73617505" target="_blank" >RIV/61989592:15210/22:73617505 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.revistadestatistica.ro/wp-content/uploads/2022/09/A1_RRS-3_2022.pdf" target="_blank" >https://www.revistadestatistica.ro/wp-content/uploads/2022/09/A1_RRS-3_2022.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Time Series Analysis by Fuzzy Linear Regression

  • Popis výsledku v původním jazyce

    Fuzzy set theory constitutes the theoretical background for abstractly formalizing the vague phenomenon of complex systems. Vague data are defined herein as specialized fuzzy sets, i.e., fuzzy numbers, and a fuzzy linear regression model is described as a fuzzy function with such numbers as vague parameters. We applied a generic algorithm to identify the associated coefficients of the model, and provide both analytically and graphically, a linear approximation of the vague function, together with description of its potential application. We also provide an example of the fuzzy linear regression model being employed in a time series with economic indicators, namely the evolution of the unemployment, agricultural production, and construction between 2009 and 2011 in the Czech Republic. We selected this period since it represents the period when the financial and economic crisis started, and a certain degree of uncertainty existed in the evolution of economic indicators. Results take the form of fuzzy regression models in relation to variables of the time-specific series. For the period 2009-2011, analysis confirmed assumptions held by the authors on the seasonal behaviour of such variables and connections between them. In 2010, the system behaved in a fuzzier manner; hence, relationships between variables were vaguer than otherwise, brought about by factors such as difference in the elasticity of demand, state interventions, globalization, and transnational impacts.

  • Název v anglickém jazyce

    Time Series Analysis by Fuzzy Linear Regression

  • Popis výsledku anglicky

    Fuzzy set theory constitutes the theoretical background for abstractly formalizing the vague phenomenon of complex systems. Vague data are defined herein as specialized fuzzy sets, i.e., fuzzy numbers, and a fuzzy linear regression model is described as a fuzzy function with such numbers as vague parameters. We applied a generic algorithm to identify the associated coefficients of the model, and provide both analytically and graphically, a linear approximation of the vague function, together with description of its potential application. We also provide an example of the fuzzy linear regression model being employed in a time series with economic indicators, namely the evolution of the unemployment, agricultural production, and construction between 2009 and 2011 in the Czech Republic. We selected this period since it represents the period when the financial and economic crisis started, and a certain degree of uncertainty existed in the evolution of economic indicators. Results take the form of fuzzy regression models in relation to variables of the time-specific series. For the period 2009-2011, analysis confirmed assumptions held by the authors on the seasonal behaviour of such variables and connections between them. In 2010, the system behaved in a fuzzier manner; hence, relationships between variables were vaguer than otherwise, brought about by factors such as difference in the elasticity of demand, state interventions, globalization, and transnational impacts.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Romanian Statistical Review

  • ISSN

    1018-046X

  • e-ISSN

    1844-7694

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    RO - Rumunsko

  • Počet stran výsledku

    19

  • Strana od-do

    3-21

  • Kód UT WoS článku

    000913205300001

  • EID výsledku v databázi Scopus