Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Causal maps in the analysis and unsupervised assessment of the development of expert knowledge: Quantification of the learning effects for knowledge management purposes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F24%3A73619769" target="_blank" >RIV/61989592:15210/24:73619769 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0957417423017347" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417423017347</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2023.121232" target="_blank" >10.1016/j.eswa.2023.121232</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Causal maps in the analysis and unsupervised assessment of the development of expert knowledge: Quantification of the learning effects for knowledge management purposes

  • Popis výsledku v původním jazyce

    This study proposes an application of cognitive maps in the representation of cognitive structures of the experts and assessment of their development/modification as a result of a (computer or expert system-assisted) learning process. It strives to identify information needed for the guidance of the process of creation and management of expert knowledge by formal modeling tools. Changes in experts’ cognitive structures are assumed to stem from individual and collaborative (group-level) learning. The novel approach to assessing the outcomes of learning reflected as changes in the cognitive structures of experts or groups of experts, modeled by cognitive maps, does not assume any correct or desired outcome of the learning process to be known in advance. Instead, it identifies and analyzes the changes in (or robustness of) the constituents of the cognitive maps from different points of view and allows for quantifying and visualizing the actual effect of the learning. The proposed methodology can identify changes in cognitive diversity, causal structures in terms of causal relations and concepts, and the perceived importance of strategic issues over the learning period. It can also detect which cause–effect relationships have appeared/disappeared considering the pre-/post-mapping design. Thus, it provides an exploratory account on the changes in the cognitive structures of the expert(s) as a result of learning. The applicability of the proposed methods is illustrated in the assessment of the learning outcomes of a group of 71 graduate students who participated in an eight-week business simulation task. The results of the empirical analysis confirm the viability of the proposed methodology and indicate that the students’ understanding of the utilized concepts and associated relationships in the decision-making process improved throughout the learning activity, ultimately showing that the course learning has considerably improved students’ perception and knowledge. Based on the results, it can be concluded that the proposed approach has the potential to be effective in assessing learning outcomes in teaching–learning activities.

  • Název v anglickém jazyce

    Causal maps in the analysis and unsupervised assessment of the development of expert knowledge: Quantification of the learning effects for knowledge management purposes

  • Popis výsledku anglicky

    This study proposes an application of cognitive maps in the representation of cognitive structures of the experts and assessment of their development/modification as a result of a (computer or expert system-assisted) learning process. It strives to identify information needed for the guidance of the process of creation and management of expert knowledge by formal modeling tools. Changes in experts’ cognitive structures are assumed to stem from individual and collaborative (group-level) learning. The novel approach to assessing the outcomes of learning reflected as changes in the cognitive structures of experts or groups of experts, modeled by cognitive maps, does not assume any correct or desired outcome of the learning process to be known in advance. Instead, it identifies and analyzes the changes in (or robustness of) the constituents of the cognitive maps from different points of view and allows for quantifying and visualizing the actual effect of the learning. The proposed methodology can identify changes in cognitive diversity, causal structures in terms of causal relations and concepts, and the perceived importance of strategic issues over the learning period. It can also detect which cause–effect relationships have appeared/disappeared considering the pre-/post-mapping design. Thus, it provides an exploratory account on the changes in the cognitive structures of the expert(s) as a result of learning. The applicability of the proposed methods is illustrated in the assessment of the learning outcomes of a group of 71 graduate students who participated in an eight-week business simulation task. The results of the empirical analysis confirm the viability of the proposed methodology and indicate that the students’ understanding of the utilized concepts and associated relationships in the decision-making process improved throughout the learning activity, ultimately showing that the course learning has considerably improved students’ perception and knowledge. Based on the results, it can be concluded that the proposed approach has the potential to be effective in assessing learning outcomes in teaching–learning activities.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    EXPERT SYSTEMS WITH APPLICATIONS

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Svazek periodika

    236

  • Číslo periodika v rámci svazku

    February 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    1-22

  • Kód UT WoS článku

    001078685100001

  • EID výsledku v databázi Scopus

    2-s2.0-85170079119