Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F24%3A73620457" target="_blank" >RIV/61989592:15210/24:73620457 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cam.2023.115663" target="_blank" >https://doi.org/10.1016/j.cam.2023.115663</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115663" target="_blank" >10.1016/j.cam.2023.115663</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets
Popis výsledku v původním jazyce
This paper introduces a new defuzzification technique derived as a generalization of the formula for the calculation of possibilistic mean originally proposed by Carlsson and Fullér in 2001 for fuzzy numbers. Unlike the possibilistic mean, the generalized formulation allows also for the defuzzification of subnormal convex fuzzy sets and also for non-convex fuzzy sets (e.g. the outputs of Mamdani- or Larsen-type fuzzy inference). The Luukka–Stoklasa–Collan transformation introduced in 2019 is applied to generalize the possibilistic mean formula. Using this transformation an algorithm for the calculation of the possibilistic-mean-based defuzzification of a general fuzzy set with a continuous membership function on the given interval is proposed. This way the Luukka–Stoklasa Defuzzification (LSD) inspired by the possibilistic mean construction is introduced - a defuzzification that can be calculated also for fuzzy sets in general (subnormal, non-convex), not only for fuzzy numbers. As such LSD is applicable also in fuzzy expert systems and fuzzy control settings where the outputs of the inference systems can be expected to be represented by subnormal and non-convex fuzzy sets. Fast-computation formulas for LSD of piece-wise linear fuzzy sets are also provided. The applicability of LSD in the ranking of fuzzy numbers and its ability to distinguish between fuzzy numbers where other frequently used defuzzification methods do not is shown. Two more case studies are presented where LSD outperforms the chosen frequently used defuzzification methods: a fuzzy expert system for inventory control and a fuzzy cruise controller problem.
Název v anglickém jazyce
Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets
Popis výsledku anglicky
This paper introduces a new defuzzification technique derived as a generalization of the formula for the calculation of possibilistic mean originally proposed by Carlsson and Fullér in 2001 for fuzzy numbers. Unlike the possibilistic mean, the generalized formulation allows also for the defuzzification of subnormal convex fuzzy sets and also for non-convex fuzzy sets (e.g. the outputs of Mamdani- or Larsen-type fuzzy inference). The Luukka–Stoklasa–Collan transformation introduced in 2019 is applied to generalize the possibilistic mean formula. Using this transformation an algorithm for the calculation of the possibilistic-mean-based defuzzification of a general fuzzy set with a continuous membership function on the given interval is proposed. This way the Luukka–Stoklasa Defuzzification (LSD) inspired by the possibilistic mean construction is introduced - a defuzzification that can be calculated also for fuzzy sets in general (subnormal, non-convex), not only for fuzzy numbers. As such LSD is applicable also in fuzzy expert systems and fuzzy control settings where the outputs of the inference systems can be expected to be represented by subnormal and non-convex fuzzy sets. Fast-computation formulas for LSD of piece-wise linear fuzzy sets are also provided. The applicability of LSD in the ranking of fuzzy numbers and its ability to distinguish between fuzzy numbers where other frequently used defuzzification methods do not is shown. Two more case studies are presented where LSD outperforms the chosen frequently used defuzzification methods: a fuzzy expert system for inventory control and a fuzzy cruise controller problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
441
Číslo periodika v rámci svazku
15 May 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
001112310000001
EID výsledku v databázi Scopus
2-s2.0-85176226785