Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F24%3A73620457" target="_blank" >RIV/61989592:15210/24:73620457 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.cam.2023.115663" target="_blank" >https://doi.org/10.1016/j.cam.2023.115663</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2023.115663" target="_blank" >10.1016/j.cam.2023.115663</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets

  • Popis výsledku v původním jazyce

    This paper introduces a new defuzzification technique derived as a generalization of the formula for the calculation of possibilistic mean originally proposed by Carlsson and Fullér in 2001 for fuzzy numbers. Unlike the possibilistic mean, the generalized formulation allows also for the defuzzification of subnormal convex fuzzy sets and also for non-convex fuzzy sets (e.g. the outputs of Mamdani- or Larsen-type fuzzy inference). The Luukka–Stoklasa–Collan transformation introduced in 2019 is applied to generalize the possibilistic mean formula. Using this transformation an algorithm for the calculation of the possibilistic-mean-based defuzzification of a general fuzzy set with a continuous membership function on the given interval is proposed. This way the Luukka–Stoklasa Defuzzification (LSD) inspired by the possibilistic mean construction is introduced - a defuzzification that can be calculated also for fuzzy sets in general (subnormal, non-convex), not only for fuzzy numbers. As such LSD is applicable also in fuzzy expert systems and fuzzy control settings where the outputs of the inference systems can be expected to be represented by subnormal and non-convex fuzzy sets. Fast-computation formulas for LSD of piece-wise linear fuzzy sets are also provided. The applicability of LSD in the ranking of fuzzy numbers and its ability to distinguish between fuzzy numbers where other frequently used defuzzification methods do not is shown. Two more case studies are presented where LSD outperforms the chosen frequently used defuzzification methods: a fuzzy expert system for inventory control and a fuzzy cruise controller problem.

  • Název v anglickém jazyce

    Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets

  • Popis výsledku anglicky

    This paper introduces a new defuzzification technique derived as a generalization of the formula for the calculation of possibilistic mean originally proposed by Carlsson and Fullér in 2001 for fuzzy numbers. Unlike the possibilistic mean, the generalized formulation allows also for the defuzzification of subnormal convex fuzzy sets and also for non-convex fuzzy sets (e.g. the outputs of Mamdani- or Larsen-type fuzzy inference). The Luukka–Stoklasa–Collan transformation introduced in 2019 is applied to generalize the possibilistic mean formula. Using this transformation an algorithm for the calculation of the possibilistic-mean-based defuzzification of a general fuzzy set with a continuous membership function on the given interval is proposed. This way the Luukka–Stoklasa Defuzzification (LSD) inspired by the possibilistic mean construction is introduced - a defuzzification that can be calculated also for fuzzy sets in general (subnormal, non-convex), not only for fuzzy numbers. As such LSD is applicable also in fuzzy expert systems and fuzzy control settings where the outputs of the inference systems can be expected to be represented by subnormal and non-convex fuzzy sets. Fast-computation formulas for LSD of piece-wise linear fuzzy sets are also provided. The applicability of LSD in the ranking of fuzzy numbers and its ability to distinguish between fuzzy numbers where other frequently used defuzzification methods do not is shown. Two more case studies are presented where LSD outperforms the chosen frequently used defuzzification methods: a fuzzy expert system for inventory control and a fuzzy cruise controller problem.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computational and Applied Mathematics

  • ISSN

    0377-0427

  • e-ISSN

    1879-1778

  • Svazek periodika

    441

  • Číslo periodika v rámci svazku

    15 May 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

  • Kód UT WoS článku

    001112310000001

  • EID výsledku v databázi Scopus

    2-s2.0-85176226785