Generalized dissemblance index as a difference of first moments of fuzzy numbers – A new perspective on the distance of fuzzy numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F24%3A73621789" target="_blank" >RIV/61989592:15210/24:73621789 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ins.2024.120118" target="_blank" >https://doi.org/10.1016/j.ins.2024.120118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2024.120118" target="_blank" >10.1016/j.ins.2024.120118</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized dissemblance index as a difference of first moments of fuzzy numbers – A new perspective on the distance of fuzzy numbers
Popis výsledku v původním jazyce
This paper investigates the formulation of the dissemblance index as a basis for the calculation of distances of fuzzy numbers and explores its potential linkages with standard and possibilistic moments of fuzzy numbers. Applying the LSC transformation introduced recently by Luukka, Stoklasa and Collan we transform the general formulation of the dissemblance index into its “probabilistic” analogy and show that the result can be interpreted as a difference of COGs of the respective fuzzy numbers (potentially with hedges applied to them). We also show that the difference of possibilistic means is a special case of the general dissemblance index, when w =1. We also propose a generalized version of the possibilistic mean of a fuzzy number and prove its properties. We discuss the implications of this relationship on the practical use of the generalized dissemblance index and investigate its performance in the task of ranking of fuzzy numbers.
Název v anglickém jazyce
Generalized dissemblance index as a difference of first moments of fuzzy numbers – A new perspective on the distance of fuzzy numbers
Popis výsledku anglicky
This paper investigates the formulation of the dissemblance index as a basis for the calculation of distances of fuzzy numbers and explores its potential linkages with standard and possibilistic moments of fuzzy numbers. Applying the LSC transformation introduced recently by Luukka, Stoklasa and Collan we transform the general formulation of the dissemblance index into its “probabilistic” analogy and show that the result can be interpreted as a difference of COGs of the respective fuzzy numbers (potentially with hedges applied to them). We also show that the difference of possibilistic means is a special case of the general dissemblance index, when w =1. We also propose a generalized version of the possibilistic mean of a fuzzy number and prove its properties. We discuss the implications of this relationship on the practical use of the generalized dissemblance index and investigate its performance in the task of ranking of fuzzy numbers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
660
Číslo periodika v rámci svazku
march 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001164711600001
EID výsledku v databázi Scopus
2-s2.0-85182601286