Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rychlá faktorizace podle podobnosti ve formální konceptuální analýze dat s fuzzy atributy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F07%3A00003602" target="_blank" >RIV/61989592:15310/07:00003602 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fast factorization by similarity in formal concept analysis of data with fuzzy attributes

  • Popis výsledku v původním jazyce

    We present a method of fast factorization in formal concept analysis (FCA) of data with fuzzy attributes. The output of FCA consists of a partially ordered collection of clusters extracted from a data table describing objects and their attributes. The collection is called a concept lattice. Factorization by similarity enables us to obtain, instead of a possibly large concept lattice, its factor lattice. The elements of the factor lattice are maximal blocks of clusters which are pairwise similar to degree exceeding a user-specified threshold. The factor lattice thus represents an approximate version of the original concept lattice. We describe a fuzzy closure operator the fixed points of which are just clusters which uniquely determine the blocks of clusters of the factor lattice. This enables us to compute the factor lattice directly from the data without the need to compute the whole concept lattice. We present theoretical solution and examples demonstrating the speed-up of our method

  • Název v anglickém jazyce

    Fast factorization by similarity in formal concept analysis of data with fuzzy attributes

  • Popis výsledku anglicky

    We present a method of fast factorization in formal concept analysis (FCA) of data with fuzzy attributes. The output of FCA consists of a partially ordered collection of clusters extracted from a data table describing objects and their attributes. The collection is called a concept lattice. Factorization by similarity enables us to obtain, instead of a possibly large concept lattice, its factor lattice. The elements of the factor lattice are maximal blocks of clusters which are pairwise similar to degree exceeding a user-specified threshold. The factor lattice thus represents an approximate version of the original concept lattice. We describe a fuzzy closure operator the fixed points of which are just clusters which uniquely determine the blocks of clusters of the factor lattice. This enables us to compute the factor lattice directly from the data without the need to compute the whole concept lattice. We present theoretical solution and examples demonstrating the speed-up of our method

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computer and System Sciences

  • ISSN

    0022-0000

  • e-ISSN

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    1012-1022

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus