Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Direct factorization by similarity of fuzzy concept lattices by factorization of input data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F08%3A00005376" target="_blank" >RIV/61989592:15310/08:00005376 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Direct factorization by similarity of fuzzy concept lattices by factorization of input data

  • Popis výsledku v původním jazyce

    The paper presents additional results on factorization by similarity of fuzzy concept lattices. A fuzzy concept lattice is a hierarchically ordered collection of clusters extracted from tabular data. The basic idea of factorization by similarity is to have, instead of a possibly large original fuzzy concept lattice, its factor lattice. The factor lattice contains less clusters than the original concept lattice but, at the same time, represents a reasonable approximation of the original concept lattice and provides us with a granular view on the original concept lattice. The factor lattice results by factorization of the original fuzzy concept lattice by a similarity relation. The similarity relation is specified by a user by means of a single parameter, called a similarity threshold. Smaller similarity thresholds lead to smaller factor lattices, i.e. to more comprehensible but less accurate approximations of the original concept lattice. Therefore, factorization by similarity provides

  • Název v anglickém jazyce

    Direct factorization by similarity of fuzzy concept lattices by factorization of input data

  • Popis výsledku anglicky

    The paper presents additional results on factorization by similarity of fuzzy concept lattices. A fuzzy concept lattice is a hierarchically ordered collection of clusters extracted from tabular data. The basic idea of factorization by similarity is to have, instead of a possibly large original fuzzy concept lattice, its factor lattice. The factor lattice contains less clusters than the original concept lattice but, at the same time, represents a reasonable approximation of the original concept lattice and provides us with a granular view on the original concept lattice. The factor lattice results by factorization of the original fuzzy concept lattice by a similarity relation. The similarity relation is specified by a user by means of a single parameter, called a similarity threshold. Smaller similarity thresholds lead to smaller factor lattices, i.e. to more comprehensible but less accurate approximations of the original concept lattice. Therefore, factorization by similarity provides

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    4923

  • Číslo periodika v rámci svazku

    N

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    12

  • Strana od-do

    68-79

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus