Robust factor analysis for compositional data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010055" target="_blank" >RIV/61989592:15310/09:00010055 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust factor analysis for compositional data
Popis výsledku v původním jazyce
Factor analysis as a dimension reduction technique is widely used with compositional data. Using the method for raw data or for improperly transformed data will, however, lead to biased results and consequently to misleading interpretations. Although some procedures, suitable for factor analysis with compositional data, were already developed, they require pre-knowledge of variable groups, or are complicated to handle. We present an approach based on the centred logratio (clr) transformation that does not build on this pre-knowledge, but still recognizes the specific character of compositional data. In addition, by using the isometric logratio transformation it is possible to robustify factor analysis using a robust estimation of the covariance matrix.A back-transformation of the results to the clr space allows an interpretation of the results with compositional biplots. The method is demonstrated with data from the Kola project, a large ecogeochemical mapping project in northern Euro
Název v anglickém jazyce
Robust factor analysis for compositional data
Popis výsledku anglicky
Factor analysis as a dimension reduction technique is widely used with compositional data. Using the method for raw data or for improperly transformed data will, however, lead to biased results and consequently to misleading interpretations. Although some procedures, suitable for factor analysis with compositional data, were already developed, they require pre-knowledge of variable groups, or are complicated to handle. We present an approach based on the centred logratio (clr) transformation that does not build on this pre-knowledge, but still recognizes the specific character of compositional data. In addition, by using the isometric logratio transformation it is possible to robustify factor analysis using a robust estimation of the covariance matrix.A back-transformation of the results to the clr space allows an interpretation of the results with compositional biplots. The method is demonstrated with data from the Kola project, a large ecogeochemical mapping project in northern Euro
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Geosciences
ISSN
0098-3004
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—