Optimal triangular decompositions of matrices with entries from residuated lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010273" target="_blank" >RIV/61989592:15310/09:00010273 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal triangular decompositions of matrices with entries from residuated lattices
Popis výsledku v původním jazyce
We describe optimal decompositions of an n x m matrix I into a triangular product I 1/4 A / B of an n x k matrix A and a k x m matrix B. We assume that the matrix entries are elements of a residuated lattice, which leaves binary matrices or matrices which con- tain numbers from the unit interval [0,1] as special cases. The entries of I, A, and B represent grades to which objects have attributes, factors apply to objects, and attributes are particular manifestations of factors, respectively. This way, the decomposition provides a model for factor analysis of graded data. We prove that fixpoints of particular operators associated with I, which are studied in formal concept analysis, are optimal factors for decomposition of I in that they provide us withdecompositions I 1/4 A / B with the smallest number k of factors possible. Moreover, we describe transformations between the m- dimensional space of original attributes and the k-dimensional space of factors.We provide illustrative exampl
Název v anglickém jazyce
Optimal triangular decompositions of matrices with entries from residuated lattices
Popis výsledku anglicky
We describe optimal decompositions of an n x m matrix I into a triangular product I 1/4 A / B of an n x k matrix A and a k x m matrix B. We assume that the matrix entries are elements of a residuated lattice, which leaves binary matrices or matrices which con- tain numbers from the unit interval [0,1] as special cases. The entries of I, A, and B represent grades to which objects have attributes, factors apply to objects, and attributes are particular manifestations of factors, respectively. This way, the decomposition provides a model for factor analysis of graded data. We prove that fixpoints of particular operators associated with I, which are studied in formal concept analysis, are optimal factors for decomposition of I in that they provide us withdecompositions I 1/4 A / B with the smallest number k of factors possible. Moreover, we describe transformations between the m- dimensional space of original attributes and the k-dimensional space of factors.We provide illustrative exampl
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—