Optimal decompositions of matrices with entries from residuated lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33147464" target="_blank" >RIV/61989592:15310/12:33147464 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1093/logcom/exr023" target="_blank" >http://dx.doi.org/10.1093/logcom/exr023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exr023" target="_blank" >10.1093/logcom/exr023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal decompositions of matrices with entries from residuated lattices
Popis výsledku v původním jazyce
We describe optimal decompositions of matrices whose entries are elements of a residuated lattice L, such as L=[0, 1]. Such matrices represent relationships between objects and attributes with the entries representing degrees to which attributes represented by columns apply to objects represented by rows. Given such an n x m object-attribute matrix I, we look for a decomposition of I into a product A * B of an n x k object-factor matrix A and a k x m factor-attribute matrix B with entries from L with the number k of factors as small as possible. We show that formal concepts of I, which play a central role in the Port-Royal approach to logic and which are the fixpoints of particular Galois connections associated to I, are optimal factors for decomposition of I in that they provide us with decompositions with the smallest number of factors. Moreover, we describe transformations between the space of original attributes and the space of factors induced by a decomposition I = A * B. The art
Název v anglickém jazyce
Optimal decompositions of matrices with entries from residuated lattices
Popis výsledku anglicky
We describe optimal decompositions of matrices whose entries are elements of a residuated lattice L, such as L=[0, 1]. Such matrices represent relationships between objects and attributes with the entries representing degrees to which attributes represented by columns apply to objects represented by rows. Given such an n x m object-attribute matrix I, we look for a decomposition of I into a product A * B of an n x k object-factor matrix A and a k x m factor-attribute matrix B with entries from L with the number k of factors as small as possible. We show that formal concepts of I, which play a central role in the Port-Royal approach to logic and which are the fixpoints of particular Galois connections associated to I, are optimal factors for decomposition of I in that they provide us with decompositions with the smallest number of factors. Moreover, we describe transformations between the space of original attributes and the space of factors induced by a decomposition I = A * B. The art
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Rozklady matic s binárními a ordinálními daty: teorie, algoritmy, složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Logic and Computation Advance Access
ISSN
0955-792X
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
1405-1425
Kód UT WoS článku
000311670000007
EID výsledku v databázi Scopus
—