Factor analysis of incidence data via novel decomposition of matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010281" target="_blank" >RIV/61989592:15310/09:00010281 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Factor analysis of incidence data via novel decomposition of matrices
Popis výsledku v původním jazyce
Matrix decomposition methods provide representations of anobject-variable data matrix by a product of two different matrices, onedescribing relationship between objects and hidden variables or factors,and the other describing relationship between the factors and the originalvariables. We present a novel approach to decomposition and factoranalysis of matrices with incidence data. The matrix entries are gradesto which objects represented by rows satisfy attributes represented bycolumns, e.g. grades to which an image is red or a person performs wellin a test. We assume that the grades belong to a scale bounded by 0and 1 which is equipped with certain aggregation operators and forms acomplete residuated lattice. We present an approximation algorithm forthe problem of decomposition of such matrices with grades into productsof two matrices with grades with the number of factors as smallas possible. Decomposition of binary matrices into Boolean products ofbinary matrices is a special case of
Název v anglickém jazyce
Factor analysis of incidence data via novel decomposition of matrices
Popis výsledku anglicky
Matrix decomposition methods provide representations of anobject-variable data matrix by a product of two different matrices, onedescribing relationship between objects and hidden variables or factors,and the other describing relationship between the factors and the originalvariables. We present a novel approach to decomposition and factoranalysis of matrices with incidence data. The matrix entries are gradesto which objects represented by rows satisfy attributes represented bycolumns, e.g. grades to which an image is red or a person performs wellin a test. We assume that the grades belong to a scale bounded by 0and 1 which is equipped with certain aggregation operators and forms acomplete residuated lattice. We present an approximation algorithm forthe problem of decomposition of such matrices with grades into productsof two matrices with grades with the number of factors as smallas possible. Decomposition of binary matrices into Boolean products ofbinary matrices is a special case of
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Artificial Intelligence
ISSN
0302-9743
e-ISSN
—
Svazek periodika
5548
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—