Factorization of matrices with grades
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33160375" target="_blank" >RIV/61989592:15310/16:33160375 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0165011415001694" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0165011415001694</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2015.03.020" target="_blank" >10.1016/j.fss.2015.03.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Factorization of matrices with grades
Popis výsledku v původním jazyce
We present an approach to decomposition and factor analysis of matrices with ordinal data. The matrix entries are grades to which objects represented by rows satisfy attributes represented by columns, e.g. grades to which an image is red, a product has a given feature, or a person performs well in a test. We assume that the grades are taken from bounded scales equipped with certain aggregation operators that are involved in the decompositions. Particular cases of the decompositions include the well-known Boolean matrix decomposition, and the sup-t-norm and inf-residuum decompositions. We consider the problem of decomposition of a given matrix into a product of two matrices with grades such that the number of factors, i.e. the inner dimension, be as small as possible. We observe that computing such decompositions is NP-hard and present a greedy approximation algorithm. Our algorithm is based on a geometric insight provided by a theorem identifying particular rectangular-shaped submatrices as optimal factors for the decompositions. These factors correspond to fixpoints of certain Galois connections associated with the input matrix, which are called formal concepts, and allow an easy interpretation of the decomposition. We present illustrative examples and experimental evaluation of the algorithm.
Název v anglickém jazyce
Factorization of matrices with grades
Popis výsledku anglicky
We present an approach to decomposition and factor analysis of matrices with ordinal data. The matrix entries are grades to which objects represented by rows satisfy attributes represented by columns, e.g. grades to which an image is red, a product has a given feature, or a person performs well in a test. We assume that the grades are taken from bounded scales equipped with certain aggregation operators that are involved in the decompositions. Particular cases of the decompositions include the well-known Boolean matrix decomposition, and the sup-t-norm and inf-residuum decompositions. We consider the problem of decomposition of a given matrix into a product of two matrices with grades such that the number of factors, i.e. the inner dimension, be as small as possible. We observe that computing such decompositions is NP-hard and present a greedy approximation algorithm. Our algorithm is based on a geometric insight provided by a theorem identifying particular rectangular-shaped submatrices as optimal factors for the decompositions. These factors correspond to fixpoints of certain Galois connections associated with the input matrix, which are called formal concepts, and allow an easy interpretation of the decomposition. We present illustrative examples and experimental evaluation of the algorithm.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Svazek periodika
292
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
85-97
Kód UT WoS článku
000371786900006
EID výsledku v databázi Scopus
2-s2.0-84926659902