Formal Concept Analysis with Attribute Priorities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010944" target="_blank" >RIV/61989592:15310/09:00010944 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formal Concept Analysis with Attribute Priorities
Popis výsledku v původním jazyce
Formal concept analysis has recently been applied to data analysis, visualization, and knowledge extraction in various fields. Central to formal concept analysis is the notion of a formal concept which is a particular cluster in data. This chapter presents an extension of a basic setting of formal concept analysis. It allows a user to enter, along with the input data, his priorities regarding relative importance of attributes. Adding attribute priorities results in extraction of only those clusters in data which are compatible with the attribute priorities. The main effect is that the user is supplied with a smaller number of more relevant clusters and is thus not overwhelmed by a possibly large number of all formal concepts which logically exist in data. In this overview chapter, we present the approach and illustrative examples from marketing.
Název v anglickém jazyce
Formal Concept Analysis with Attribute Priorities
Popis výsledku anglicky
Formal concept analysis has recently been applied to data analysis, visualization, and knowledge extraction in various fields. Central to formal concept analysis is the notion of a formal concept which is a particular cluster in data. This chapter presents an extension of a basic setting of formal concept analysis. It allows a user to enter, along with the input data, his priorities regarding relative importance of attributes. Adding attribute priorities results in extraction of only those clusters in data which are compatible with the attribute priorities. The main effect is that the user is supplied with a smaller number of more relevant clusters and is thus not overwhelmed by a possibly large number of all formal concepts which logically exist in data. In this overview chapter, we present the approach and illustrative examples from marketing.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1ET101370417" target="_blank" >1ET101370417: Hierarchická analýza složitých dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Data Mining for Design and Marketing
ISBN
978-1-4200-7019-4
Počet stran výsledku
11
Strana od-do
—
Počet stran knihy
336
Název nakladatele
Chapman & Hall/CRC
Místo vydání
Boca Raton, FL, USA
Kód UT WoS kapitoly
—