Formal concept analysis with background knowledge: Attribute Priorities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010275" target="_blank" >RIV/61989592:15310/09:00010275 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formal concept analysis with background knowledge: Attribute Priorities
Popis výsledku v původním jazyce
This paper deals with background knowledge in knowledge extraction from binary data. A background knowledge represents an additional piece of information a user may have along with the input data. Such information can be considered as specifying the typeof knowledge a user is looking for in the data. In particular, we emphasize the need for taking into account background knowledge in formal concept analysis. We present an approach to modeling background knowledge which represents user's priorities regarding attributes and their relative importance. Such priorities serve as a constraint---only those formal concepts which are compatible with user's priorities are considered relevant, extracted from data, and presented to the user. Our approach has two main practical features. First, the number of formal concepts presented to the user may get significantly reduced. As a result, the user is supplied with relevant formal concepts only and is not overwhelmed by a large number o
Název v anglickém jazyce
Formal concept analysis with background knowledge: Attribute Priorities
Popis výsledku anglicky
This paper deals with background knowledge in knowledge extraction from binary data. A background knowledge represents an additional piece of information a user may have along with the input data. Such information can be considered as specifying the typeof knowledge a user is looking for in the data. In particular, we emphasize the need for taking into account background knowledge in formal concept analysis. We present an approach to modeling background knowledge which represents user's priorities regarding attributes and their relative importance. Such priorities serve as a constraint---only those formal concepts which are compatible with user's priorities are considered relevant, extracted from data, and presented to the user. Our approach has two main practical features. First, the number of formal concepts presented to the user may get significantly reduced. As a result, the user is supplied with relevant formal concepts only and is not overwhelmed by a large number o
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Systems, Man, and Cybernetics, Part C
ISSN
1094-6977
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—