Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Selecting Important Concepts Using Weights

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A10225098" target="_blank" >RIV/61989592:15310/11:10225098 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Selecting Important Concepts Using Weights

  • Popis výsledku v původním jazyce

    We present an approach that enables one to select a reasonable small number of possibly important formal concepts from the set of all formal concepts of a given input data. The problem to select a small number of concepts appears in applications of formal concept analysis when the number of all formal concepts of the input data is large. Namely, a user often asks for a list of "important concepts" in such case. In the present approach, attributes of the input data are assigned weights from which valuesof formal concepts are determined. Formal concepts with larger values are considered more important. The attribute weights are supposed to be set by the users. The approach is a continuation of our previous approaches that utilize background knowledge, i.e. additional knowledge of a user, to select parts of concept lattices. In addition to the approach, we present illustrative examples.

  • Název v anglickém jazyce

    Selecting Important Concepts Using Weights

  • Popis výsledku anglicky

    We present an approach that enables one to select a reasonable small number of possibly important formal concepts from the set of all formal concepts of a given input data. The problem to select a small number of concepts appears in applications of formal concept analysis when the number of all formal concepts of the input data is large. Namely, a user often asks for a list of "important concepts" in such case. In the present approach, attributes of the input data are assigned weights from which valuesof formal concepts are determined. Formal concepts with larger values are considered more important. The attribute weights are supposed to be set by the users. The approach is a continuation of our previous approaches that utilize background knowledge, i.e. additional knowledge of a user, to select parts of concept lattices. In addition to the approach, we present illustrative examples.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP103%2F10%2F1056" target="_blank" >GAP103/10/1056: Konceptuální zpracování nejistých a rozsáhlých dat a znalostí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    6628

  • Číslo periodika v rámci svazku

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    16

  • Strana od-do

    65-80

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus