A new Approach to the Problem of an Elastic Beam Resting on a Foundation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10221986" target="_blank" >RIV/61989592:15310/10:10221986 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new Approach to the Problem of an Elastic Beam Resting on a Foundation
Popis výsledku v původním jazyce
The beam is considered as Euler--Bernoulli 1D model. The foundation model is assumed as Winkler's or Pasternak's type. These foundations can be handled either as classical ones, i.e. firmly connected with the beam, or as unilateral, i.e. not connected with the beam. A new idea of solution consists in constructing a Lagrangian by means of a suitable problem decomposition, after that we are able to convert the usual variational formulation of our problem to a saddle-point formulation for the Lagrangian. Next we will deal with a numerical solution using the finite element method. The problem solution can be realized via a system of equations which characterizes the saddle point. As for the unilateral case the system is nonlinear and nondifferentiable, wemust try either a nonsmooth Newton method or methods for nonlinear complementarity problems. An interesting way to overcome this difficulties is based on using an augmented Lagrangian method.
Název v anglickém jazyce
A new Approach to the Problem of an Elastic Beam Resting on a Foundation
Popis výsledku anglicky
The beam is considered as Euler--Bernoulli 1D model. The foundation model is assumed as Winkler's or Pasternak's type. These foundations can be handled either as classical ones, i.e. firmly connected with the beam, or as unilateral, i.e. not connected with the beam. A new idea of solution consists in constructing a Lagrangian by means of a suitable problem decomposition, after that we are able to convert the usual variational formulation of our problem to a saddle-point formulation for the Lagrangian. Next we will deal with a numerical solution using the finite element method. The problem solution can be realized via a system of equations which characterizes the saddle point. As for the unilateral case the system is nonlinear and nondifferentiable, wemust try either a nonsmooth Newton method or methods for nonlinear complementarity problems. An interesting way to overcome this difficulties is based on using an augmented Lagrangian method.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Beams and Frames on Elastic Foundation 3
ISBN
978-80-248-2257-0
Počet stran výsledku
15
Strana od-do
"A99"-"A113"
Počet stran knihy
611
Název nakladatele
Vysoká škola báňská - Technická univerzita
Místo vydání
Ostrava
Kód UT WoS kapitoly
—