Mixed finite element solutions to contact problems of nonlinear Gao beam on elastic foundation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33150443" target="_blank" >RIV/61989592:15310/15:33150443 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1468121814001254#" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1468121814001254#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nonrwa.2014.09.012" target="_blank" >10.1016/j.nonrwa.2014.09.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mixed finite element solutions to contact problems of nonlinear Gao beam on elastic foundation
Popis výsledku v původním jazyce
This paper analyzes nonlinear contact problems of a large deformed beam on an elastic foundation. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao (1996); while the elastic foundation model is assumed as Winkler's type. Based on a decomposition method, the nonlinear variational inequality problem is able to be reformed as a min-max problem of a saddle Lagrangian. Therefore, by using mixed finite element method with independent discretization-interpolations for foundation and beam elements, the nonlinear contact problem in continuous space is eventually converted as a nonlinear mixed complementarity problem, which can be solved by combination of interior-point and Newton methods. Applications are illustratedby different boundary conditions. Results show that the nonlinear Gao beam is more stiffer than the Euler-Bernoulli beam.
Název v anglickém jazyce
Mixed finite element solutions to contact problems of nonlinear Gao beam on elastic foundation
Popis výsledku anglicky
This paper analyzes nonlinear contact problems of a large deformed beam on an elastic foundation. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao (1996); while the elastic foundation model is assumed as Winkler's type. Based on a decomposition method, the nonlinear variational inequality problem is able to be reformed as a min-max problem of a saddle Lagrangian. Therefore, by using mixed finite element method with independent discretization-interpolations for foundation and beam elements, the nonlinear contact problem in continuous space is eventually converted as a nonlinear mixed complementarity problem, which can be solved by combination of interior-point and Newton methods. Applications are illustratedby different boundary conditions. Results show that the nonlinear Gao beam is more stiffer than the Euler-Bernoulli beam.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Analysis: Real World Applications
ISSN
1468-1218
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
537-550
Kód UT WoS článku
000346545700037
EID výsledku v databázi Scopus
—