Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solution of contact problems for Gao beam and elastic foundation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587509" target="_blank" >RIV/61989592:15310/18:73587509 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1177/1081286517732382" target="_blank" >http://dx.doi.org/10.1177/1081286517732382</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/1081286517732382" target="_blank" >10.1177/1081286517732382</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solution of contact problems for Gao beam and elastic foundation

  • Popis výsledku v původním jazyce

    This paper presents mathematical formulations and a solution for contact problems that concern the nonlinear beam published by Gao (Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech Res Commun 1996; 23: 11-17) and an elastic foundation. The beam is subjected to a vertical and also axial loading. The elastic deformable foundation is considered at a distance under the beam. The contact is modeled as static, frictionless and using the normal compliance contact condition. In comparison with the usual contact problem formulations, which are based on variational inequalities, we are able to derive for our problem a nonlinear variational equation. Solution of this problem is realized by means of the so-called control variational method. The main idea of this method is to transform the given contact problem to an optimal control problem, which can provide the requested solution. Finally, some results including numerical examples are offered to illustrate the usefulness of the presented solution method.

  • Název v anglickém jazyce

    Solution of contact problems for Gao beam and elastic foundation

  • Popis výsledku anglicky

    This paper presents mathematical formulations and a solution for contact problems that concern the nonlinear beam published by Gao (Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech Res Commun 1996; 23: 11-17) and an elastic foundation. The beam is subjected to a vertical and also axial loading. The elastic deformable foundation is considered at a distance under the beam. The contact is modeled as static, frictionless and using the normal compliance contact condition. In comparison with the usual contact problem formulations, which are based on variational inequalities, we are able to derive for our problem a nonlinear variational equation. Solution of this problem is realized by means of the so-called control variational method. The main idea of this method is to transform the given contact problem to an optimal control problem, which can provide the requested solution. Finally, some results including numerical examples are offered to illustrate the usefulness of the presented solution method.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MATHEMATICS AND MECHANICS OF SOLIDS

  • ISSN

    1081-2865

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    473-488

  • Kód UT WoS článku

    000429895300015

  • EID výsledku v databázi Scopus

    2-s2.0-85044132035