Solution of Contact Problems for Nonlinear Gao Beam and Obstacle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33154515" target="_blank" >RIV/61989592:15310/15:33154515 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.hindawi.com/journals/jam/2015/420649/" target="_blank" >http://www.hindawi.com/journals/jam/2015/420649/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2015/420649" target="_blank" >10.1155/2015/420649</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solution of Contact Problems for Nonlinear Gao Beam and Obstacle
Popis výsledku v původním jazyce
Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation ofWinkler's type in some distance under the beam.The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions.The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beamelements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.
Název v anglickém jazyce
Solution of Contact Problems for Nonlinear Gao Beam and Obstacle
Popis výsledku anglicky
Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation ofWinkler's type in some distance under the beam.The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions.The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beamelements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Mathematics
ISSN
1110-757X
e-ISSN
—
Svazek periodika
2015
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
"420649-1"-"420649-12"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—