FuzzME: A New Software for Multiple-Criteria Fuzzy Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10224074" target="_blank" >RIV/61989592:15310/10:10224074 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FuzzME: A New Software for Multiple-Criteria Fuzzy Evaluation
Popis výsledku v původním jazyce
This paper presents the software product FuzzME that was developed as a tool for creating fuzzy models of multiple-criteria evaluation and decision making. The type of evaluation employed in the fuzzy models fully agrees with the paradigm of the fuzzy set theory; the valuations express the (fuzzy) degrees of fulfillment of corresponding goals. In FuzzME, a goals tree is the basic structure of evaluation. Within the goals tree, the aggregation of partial fuzzy evaluations is done either by one of fuzzified aggregation perators or by a fuzzy expert system. The choice of the appropriate mode of aggregation depends on the relationships among evaluation criteria. FuzzME allows the utilization of following aggregation methods: fuzzy weighted average, fuzzy OWA operator, fuzzified WOWA operator, fuzzified Choquet integral, and fuzzy expert system. In this paper, all these methods will be described and the conditions for their use will be studied.
Název v anglickém jazyce
FuzzME: A New Software for Multiple-Criteria Fuzzy Evaluation
Popis výsledku anglicky
This paper presents the software product FuzzME that was developed as a tool for creating fuzzy models of multiple-criteria evaluation and decision making. The type of evaluation employed in the fuzzy models fully agrees with the paradigm of the fuzzy set theory; the valuations express the (fuzzy) degrees of fulfillment of corresponding goals. In FuzzME, a goals tree is the basic structure of evaluation. Within the goals tree, the aggregation of partial fuzzy evaluations is done either by one of fuzzified aggregation perators or by a fuzzy expert system. The choice of the appropriate mode of aggregation depends on the relationships among evaluation criteria. FuzzME allows the utilization of following aggregation methods: fuzzy weighted average, fuzzy OWA operator, fuzzified WOWA operator, fuzzified Choquet integral, and fuzzy expert system. In this paper, all these methods will be described and the conditions for their use will be studied.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů