Fuzzy Methods of Multiple-Criteria Evaluation and Their Software Implementation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33141812" target="_blank" >RIV/61989592:15310/12:33141812 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/978-1-61350-429-1.ch021" target="_blank" >http://dx.doi.org/10.4018/978-1-61350-429-1.ch021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-61350-429-1.ch021" target="_blank" >10.4018/978-1-61350-429-1.ch021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy Methods of Multiple-Criteria Evaluation and Their Software Implementation
Popis výsledku v původním jazyce
This chapter describes a system of fuzzy methods designed to solve a broad range of problems in multiple-criteria evaluation, and also their software implementation, FuzzME. A feature common to all the presented methods is the type of evaluation, well suited to the paradigm of fuzzy set theory. All evaluations take on the form of fuzzy numbers, expressing the extent to which goals of evaluation are fulfilled. The system of fuzzy methods is conceived to allow for different types of interaction among criteria of evaluation. Under no interaction, the fuzzy weighted average, fuzzy OWA operator, or WOWA operator are used to aggregate partial evaluations (depending on the evaluator's requirements regarding type of evaluation). If interactions appear as redundancy or complementarity, the fuzzified discrete Choquet integral is the appropriate aggregation operator. Under more complex interactions, the aggregation function is defined through an expertly set base of fuzzy rules.
Název v anglickém jazyce
Fuzzy Methods of Multiple-Criteria Evaluation and Their Software Implementation
Popis výsledku anglicky
This chapter describes a system of fuzzy methods designed to solve a broad range of problems in multiple-criteria evaluation, and also their software implementation, FuzzME. A feature common to all the presented methods is the type of evaluation, well suited to the paradigm of fuzzy set theory. All evaluations take on the form of fuzzy numbers, expressing the extent to which goals of evaluation are fulfilled. The system of fuzzy methods is conceived to allow for different types of interaction among criteria of evaluation. Under no interaction, the fuzzy weighted average, fuzzy OWA operator, or WOWA operator are used to aggregate partial evaluations (depending on the evaluator's requirements regarding type of evaluation). If interactions appear as redundancy or complementarity, the fuzzified discrete Choquet integral is the appropriate aggregation operator. Under more complex interactions, the aggregation function is defined through an expertly set base of fuzzy rules.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies
ISBN
978-1-61350-429-1
Počet stran výsledku
24
Strana od-do
388-411
Počet stran knihy
784
Název nakladatele
IGI Global
Místo vydání
Hershey, USA
Kód UT WoS kapitoly
—