Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Row and Column Spaces of Matrices over Residuated Lattices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33141900" target="_blank" >RIV/61989592:15310/12:33141900 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3233/FI-2012-656" target="_blank" >http://dx.doi.org/10.3233/FI-2012-656</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/FI-2012-656" target="_blank" >10.3233/FI-2012-656</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Row and Column Spaces of Matrices over Residuated Lattices

  • Popis výsledku v původním jazyce

    We present results regarding row and column spaces of matrices whose entries are elements of residuated lattices. In particular, we define the notions of a row and column space for matrices over residuated lattices, provide connections to concept lattices and other structures associated to such matrices, and show several properties of the row and column spaces, including properties that relate the row and column spaces to Schein ranks of matrices over residuated lattices. Among the properties is a characterization of matrices whose row (column) spaces are isomorphic. In addition, we present observations on the relationships between results established in Boolean matrix theory on one hand and formal concept analysis on the other hand.

  • Název v anglickém jazyce

    Row and Column Spaces of Matrices over Residuated Lattices

  • Popis výsledku anglicky

    We present results regarding row and column spaces of matrices whose entries are elements of residuated lattices. In particular, we define the notions of a row and column space for matrices over residuated lattices, provide connections to concept lattices and other structures associated to such matrices, and show several properties of the row and column spaces, including properties that relate the row and column spaces to Schein ranks of matrices over residuated lattices. Among the properties is a characterization of matrices whose row (column) spaces are isomorphic. In addition, we present observations on the relationships between results established in Boolean matrix theory on one hand and formal concept analysis on the other hand.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Rozklady matic s binárními a ordinálními daty: teorie, algoritmy, složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fundamenta Informaticae

  • ISSN

    0169-2968

  • e-ISSN

  • Svazek periodika

    115

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    279-295

  • Kód UT WoS článku

    000304190500003

  • EID výsledku v databázi Scopus