Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Assessment of Quantitative Uncertainty Visualization Methods for Interpolated Meteorological Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145359" target="_blank" >RIV/61989592:15310/13:33145359 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-642-39649-6_12" target="_blank" >http://dx.doi.org/10.1007/978-3-642-39649-6_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-39649-6_12" target="_blank" >10.1007/978-3-642-39649-6_12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Assessment of Quantitative Uncertainty Visualization Methods for Interpolated Meteorological Data

  • Popis výsledku v původním jazyce

    Climatological data are mostly based on data captured by the local climatological stations. It is necessary to interpolate stations' data to get the information about conditions for entire country. Types of interpolation method and their visualization do affect the perception of final results. Moreover, the data sources and models have uncertainties associated with them. It is generally important to be able to visualize those uncertainties, and especially to be able to quickly focus on areas where there is considerable disagreement. The follow-up interpretation of visualized uncertainty can be very helpful in some cases. Czech Hydrometeorological Institute provides a lot of datasets from more than 250 stations. The article is focused on potential effective ways of the interpolation and visualization of uncertainty of the temperature time-series datasets which are also one of the most traditionally measured data. A final comparing of the interpolation and interpretation are based on the uncertainty visualization which are relatively new approaches used in the geographical research but their potential has been already proven by wide usage in GIS analysis. The evaluation of interpolation methods as well as geographic data orderliness according to the uncertainty visualization is accomplished and discussed in the paper. Subsequent visualization of analysed phenomenon using this approach brings augmented and more accurate (geo) information to the user, which helps to better decision.

  • Název v anglickém jazyce

    An Assessment of Quantitative Uncertainty Visualization Methods for Interpolated Meteorological Data

  • Popis výsledku anglicky

    Climatological data are mostly based on data captured by the local climatological stations. It is necessary to interpolate stations' data to get the information about conditions for entire country. Types of interpolation method and their visualization do affect the perception of final results. Moreover, the data sources and models have uncertainties associated with them. It is generally important to be able to visualize those uncertainties, and especially to be able to quickly focus on areas where there is considerable disagreement. The follow-up interpretation of visualized uncertainty can be very helpful in some cases. Czech Hydrometeorological Institute provides a lot of datasets from more than 250 stations. The article is focused on potential effective ways of the interpolation and visualization of uncertainty of the temperature time-series datasets which are also one of the most traditionally measured data. A final comparing of the interpolation and interpretation are based on the uncertainty visualization which are relatively new approaches used in the geographical research but their potential has been already proven by wide usage in GIS analysis. The evaluation of interpolation methods as well as geographic data orderliness according to the uncertainty visualization is accomplished and discussed in the paper. Subsequent visualization of analysed phenomenon using this approach brings augmented and more accurate (geo) information to the user, which helps to better decision.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    DE - Zemský magnetismus, geodesie, geografie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EE2.3.20.0166" target="_blank" >EE2.3.20.0166: Centrum teorie vzdělávání přírodovědných oborů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    13th International Conference, Ho Chi Minh City, Vietnam, June 24-27, 2013, Proceedings, Part IV

  • ISBN

    978-3-642-39648-9

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    18

  • Strana od-do

    166-178

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Ho Chi Minh City, Vietnam

  • Datum konání akce

    24. 7. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku