Reduction of Concepts from Generalized One-Sided Concept Lattice Based on Subsets Quality Measure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155723" target="_blank" >RIV/61989592:15310/15:33155723 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-10383-9_10" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-10383-9_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-10383-9_10" target="_blank" >10.1007/978-3-319-10383-9_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reduction of Concepts from Generalized One-Sided Concept Lattice Based on Subsets Quality Measure
Popis výsledku v původním jazyce
One of the conceptual methods in data mining area is based on the onesided concept lattices, which belongs to approaches known as Formal ConceptAnalysis (FCA). It provides an analysis of objects clusters according to the set of fuzzy attributes. The specific problem of such approaches is sometimes large number of concepts created by the method, which can be crucial for the interpretation of the results and their usage in practice. In this chapter we describe the method for evaluation of concepts from generalized one-sided concept lattice based on the quality measure of objects subsets. Consequently, this method is able to select most relevant concepts according to their quality, which can lead to useful reduction of information from concept lattice. The usage of this approach is described by the illustrative example.
Název v anglickém jazyce
Reduction of Concepts from Generalized One-Sided Concept Lattice Based on Subsets Quality Measure
Popis výsledku anglicky
One of the conceptual methods in data mining area is based on the onesided concept lattices, which belongs to approaches known as Formal ConceptAnalysis (FCA). It provides an analysis of objects clusters according to the set of fuzzy attributes. The specific problem of such approaches is sometimes large number of concepts created by the method, which can be crucial for the interpretation of the results and their usage in practice. In this chapter we describe the method for evaluation of concepts from generalized one-sided concept lattice based on the quality measure of objects subsets. Consequently, this method is able to select most relevant concepts according to their quality, which can lead to useful reduction of information from concept lattice. The usage of this approach is described by the illustrative example.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0041" target="_blank" >EE2.3.30.0041: Podpora vytváření excelentních výzkumných týmů a intersektorální mobility na Univerzitě Palackého v Olomouci II.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Intelligent Systems and Computing - NEW RESEARCH IN MULTIMEDIA AND INTERNET SYSTEMS
ISSN
2194-5357
e-ISSN
—
Svazek periodika
314
Číslo periodika v rámci svazku
2015
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
101-111
Kód UT WoS článku
000348199400011
EID výsledku v databázi Scopus
—