Robust coordinates for compositional data using weighted balances
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33159867" target="_blank" >RIV/61989592:15310/15:33159867 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust coordinates for compositional data using weighted balances
Popis výsledku v původním jazyce
Multivariate observations which carry exclusively relative information are known under the name compositional data, and they have very specific geometrical properties. In order to represent them in the usual Euclidean geometry, they need to be expressed in orthonormal coordinates prior to their possible further statistical processing. As it is not possible to construct Cartesian coordinates for the compositions, that would assign a coordinate for each of the parts separately, a choice of interpretable orthonormal coordinates is of particular interest. Although recent experiences show clear advantages of such coordinates, where the first coordinate aggregates information from logratios with a particular compositional part of interest, their usefulness is limited if there are distortions like rounding errors or other data problems in the involved parts. The aim of the paper is thus to introduce a "robust" version of these coordinates, where the role of the remaining parts (with respect to the part of interest) is weighted according to their relevance for the purpose of the statistical analysis. Theoretical considerations are accompanied by examples with data sets from chemistry and geochemistry, pointing out the role of robust estimation in the context of regression with compositional covariates.
Název v anglickém jazyce
Robust coordinates for compositional data using weighted balances
Popis výsledku anglicky
Multivariate observations which carry exclusively relative information are known under the name compositional data, and they have very specific geometrical properties. In order to represent them in the usual Euclidean geometry, they need to be expressed in orthonormal coordinates prior to their possible further statistical processing. As it is not possible to construct Cartesian coordinates for the compositions, that would assign a coordinate for each of the parts separately, a choice of interpretable orthonormal coordinates is of particular interest. Although recent experiences show clear advantages of such coordinates, where the first coordinate aggregates information from logratios with a particular compositional part of interest, their usefulness is limited if there are distortions like rounding errors or other data problems in the involved parts. The aim of the paper is thus to introduce a "robust" version of these coordinates, where the role of the remaining parts (with respect to the part of interest) is weighted according to their relevance for the purpose of the statistical analysis. Theoretical considerations are accompanied by examples with data sets from chemistry and geochemistry, pointing out the role of robust estimation in the context of regression with compositional covariates.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0170" target="_blank" >EE2.3.20.0170: Budování výzkumně-vzdělávacího týmu v oblasti modelování přírodních jevů a využití geoinformačních systémů, s vazbou na zapojení do mezinárodních sítí a programů.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Modern nonparametric, robust and multivariate methods
ISBN
978-3-319-22403-9
Počet stran výsledku
18
Strana od-do
167-184
Počet stran knihy
506
Název nakladatele
Springer International Publishing
Místo vydání
Heidelberg
Kód UT WoS kapitoly
—