Preprocessing of centred logratio transformed density functions using smoothing splines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33158930" target="_blank" >RIV/61989592:15310/16:33158930 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/02664763.2015.1103706" target="_blank" >http://dx.doi.org/10.1080/02664763.2015.1103706</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2015.1103706" target="_blank" >10.1080/02664763.2015.1103706</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preprocessing of centred logratio transformed density functions using smoothing splines
Popis výsledku v původním jazyce
With large-scale database systems, statistical analysis of data, occurring in the form of probability distributions, becomes an important task in explorative data analysis. Nevertheless, due to specific properties of density functions, their proper statistical treatment of these data still represents a challenging task in functional data analysis. Namely, the usual L2 metric does not fully accounts for the relative character of information, carried by density functions; instead, their geometrical features are captured by Bayes spaces of measures. The easiest possibility of expressing density functions in an L2 space is to use centred logratio transformation, even though this results in functional data with a constant integral constraint that needs to be taken into account in further analysis. While theoretical background for reasonable analysis of density functions is already provided comprehensively by Bayes spaces themselves, preprocessing issues still need to be developed. The aim of this paper is to introduce optimal smoothing splines for centred logratio transformed density functions that take all their specific features into account and provide a concise methodology for reasonable preprocessing of raw (discretized) distributional observations. Theoretical developments are illustrated with a real-world data set from official statistics and with a simulation study
Název v anglickém jazyce
Preprocessing of centred logratio transformed density functions using smoothing splines
Popis výsledku anglicky
With large-scale database systems, statistical analysis of data, occurring in the form of probability distributions, becomes an important task in explorative data analysis. Nevertheless, due to specific properties of density functions, their proper statistical treatment of these data still represents a challenging task in functional data analysis. Namely, the usual L2 metric does not fully accounts for the relative character of information, carried by density functions; instead, their geometrical features are captured by Bayes spaces of measures. The easiest possibility of expressing density functions in an L2 space is to use centred logratio transformation, even though this results in functional data with a constant integral constraint that needs to be taken into account in further analysis. While theoretical background for reasonable analysis of density functions is already provided comprehensively by Bayes spaces themselves, preprocessing issues still need to be developed. The aim of this paper is to introduce optimal smoothing splines for centred logratio transformed density functions that take all their specific features into account and provide a concise methodology for reasonable preprocessing of raw (discretized) distributional observations. Theoretical developments are illustrated with a real-world data set from official statistics and with a simulation study
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06991S" target="_blank" >GA15-06991S: Analýza funkcionálních dat a související témata</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Statistics
ISSN
0266-4763
e-ISSN
—
Svazek periodika
43
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
"1419-1435"
Kód UT WoS článku
000373938600004
EID výsledku v databázi Scopus
—