Simplicial principal component analysis for density functions in Bayes spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159835" target="_blank" >RIV/61989592:15310/16:33159835 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0167947315001644" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0167947315001644</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2015.07.007" target="_blank" >10.1016/j.csda.2015.07.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simplicial principal component analysis for density functions in Bayes spaces
Popis výsledku v původním jazyce
Probability density functions are frequently used to characterize the distributional properties of large-scale database systems. As functional compositions, densities primarily carry relative information. As such, standard methods of functional data analysis (FDA) are not appropriate for their statistical processing. The specific features of density functions are accounted for in Bayes spaces, which result from the generalization to the infinite dimensional setting of the Aitchison geometry for compositional data. The aim is to build up a concise methodology for functional principal component analysis of densities. A simplicial functional principal component analysis (SFPCA) is proposed, based on the geometry of the Bayes space B2 of functional compositions. SFPCA is performed by exploiting the centred log-ratio transform, an isometric isomorphism between B2 and L2 which enables one to resort to standard FDA tools. The advantages of the proposed approach with respect to existing techniques are demonstrated using simulated data and a real-world example of population pyramids in Upper Austria.
Název v anglickém jazyce
Simplicial principal component analysis for density functions in Bayes spaces
Popis výsledku anglicky
Probability density functions are frequently used to characterize the distributional properties of large-scale database systems. As functional compositions, densities primarily carry relative information. As such, standard methods of functional data analysis (FDA) are not appropriate for their statistical processing. The specific features of density functions are accounted for in Bayes spaces, which result from the generalization to the infinite dimensional setting of the Aitchison geometry for compositional data. The aim is to build up a concise methodology for functional principal component analysis of densities. A simplicial functional principal component analysis (SFPCA) is proposed, based on the geometry of the Bayes space B2 of functional compositions. SFPCA is performed by exploiting the centred log-ratio transform, an isometric isomorphism between B2 and L2 which enables one to resort to standard FDA tools. The advantages of the proposed approach with respect to existing techniques are demonstrated using simulated data and a real-world example of population pyramids in Upper Austria.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06991S" target="_blank" >GA15-06991S: Analýza funkcionálních dat a související témata</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
—
Svazek periodika
94
Číslo periodika v rámci svazku
FEB
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
330-350
Kód UT WoS článku
000364798200023
EID výsledku v databázi Scopus
—