Compositional regression with functional response
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589345" target="_blank" >RIV/61989592:15310/18:73589345 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167947318300276" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167947318300276</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2018.01.018" target="_blank" >10.1016/j.csda.2018.01.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compositional regression with functional response
Popis výsledku v původním jazyce
The problem of performing functional linear regression when the response variable is represented as a probability density function (PDF) is addressed. PDFs are interpreted as functional compositions, which are objects carrying primarily relative information. In this context, the unit integral constraint allows to single out one of the possible representations of a class of equivalent measures. On these bases, a function-on-scalar regression model with distributional response is proposed, by relying on the theory of Bayes Hilbert spaces. The geometry of Bayes spaces allows capturing all the key inherent features of distributional data (e.g., scale invariance, relative scale). A B-spline basis expansion combined with a functional version of the centered log-ratio transformation is utilized for actual computations. For this purpose, a new key result is proved to characterize B-spline representations in Bayes spaces. The potential of the methodological developments is shown on simulated data and a real case study, dealing with metabolomics data. A bootstrap-based study is performed for the uncertainty quantification of the obtained estimates.
Název v anglickém jazyce
Compositional regression with functional response
Popis výsledku anglicky
The problem of performing functional linear regression when the response variable is represented as a probability density function (PDF) is addressed. PDFs are interpreted as functional compositions, which are objects carrying primarily relative information. In this context, the unit integral constraint allows to single out one of the possible representations of a class of equivalent measures. On these bases, a function-on-scalar regression model with distributional response is proposed, by relying on the theory of Bayes Hilbert spaces. The geometry of Bayes spaces allows capturing all the key inherent features of distributional data (e.g., scale invariance, relative scale). A B-spline basis expansion combined with a functional version of the centered log-ratio transformation is utilized for actual computations. For this purpose, a new key result is proved to characterize B-spline representations in Bayes spaces. The potential of the methodological developments is shown on simulated data and a real case study, dealing with metabolomics data. A bootstrap-based study is performed for the uncertainty quantification of the obtained estimates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06991S" target="_blank" >GA15-06991S: Analýza funkcionálních dat a související témata</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTATIONAL STATISTICS & DATA ANALYSIS
ISSN
0167-9473
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
JUL
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
66-85
Kód UT WoS článku
000430147700005
EID výsledku v databázi Scopus
2-s2.0-85042492763