Compositional splines for representation of density functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73603147" target="_blank" >RIV/61989592:15310/21:73603147 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15510/21:73603147
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s00180-020-01042-7.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s00180-020-01042-7.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00180-020-01042-7" target="_blank" >10.1007/s00180-020-01042-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compositional splines for representation of density functions
Popis výsledku v původním jazyce
In the context of functional data analysis, probability density functions as non-negative functions are characterized by specific properties of scale invariance and relative scale which enable to represent them with the unit integral constraint without loss of information. On the other hand, all these properties are a challenge when the densities need to be approximated with spline functions, including construction of the respective spline basis. The Bayes space methodology of density functions enables to express them as real functions in the standard L-2 space using the centered log-ratio transformation. The resulting functions satisfy the zero integral constraint. This is a key to propose a new spline basis, holding the same property, and consequently to build a new class of spline functions, called compositional splines, which can approximate probability density functions in a consistent way. The paper provides also construction of smoothing compositional splines and possible orthonormalization of the spline basis which might be useful in some applications. Finally, statistical processing of densities using the new approximation tool is demonstrated in case of simplicial functional principal component analysis with anthropometric data.
Název v anglickém jazyce
Compositional splines for representation of density functions
Popis výsledku anglicky
In the context of functional data analysis, probability density functions as non-negative functions are characterized by specific properties of scale invariance and relative scale which enable to represent them with the unit integral constraint without loss of information. On the other hand, all these properties are a challenge when the densities need to be approximated with spline functions, including construction of the respective spline basis. The Bayes space methodology of density functions enables to express them as real functions in the standard L-2 space using the centered log-ratio transformation. The resulting functions satisfy the zero integral constraint. This is a key to propose a new spline basis, holding the same property, and consequently to build a new class of spline functions, called compositional splines, which can approximate probability density functions in a consistent way. The paper provides also construction of smoothing compositional splines and possible orthonormalization of the spline basis which might be useful in some applications. Finally, statistical processing of densities using the new approximation tool is demonstrated in case of simplicial functional principal component analysis with anthropometric data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01768S" target="_blank" >GA19-01768S: Separace geochemických signálů v sedimentech: aplikace pokročilých statistických metod na rozsáhlé geochemické datové soubory</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTATIONAL STATISTICS
ISSN
0943-4062
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
34
Strana od-do
1031-1064
Kód UT WoS článku
000579680800002
EID výsledku v databázi Scopus
2-s2.0-85092765869