Relational division in rank-aware databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33160158" target="_blank" >RIV/61989592:15310/16:33160158 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0020025516303097" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020025516303097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2016.02.060" target="_blank" >10.1016/j.ins.2016.02.060</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relational division in rank-aware databases
Popis výsledku v původním jazyce
We present a survey of existing approaches to relational division in rank-aware databases, discuss issues of the present approaches, and outline generalizations of several types of classic division-like operations. We work in a model which generalizes the Codd model of data by considering tuples in relations annotated by ranks, indicating degrees to which tuples in relations match queries. The approach utilizes complete residuated lattices as the basic structures of degrees. We argue that unlike the classic model, relational divisions are fundamental operations which cannot in general be expressed by means of other operations. In addition, we compare the existing and proposed operations and identify those which are faithful counterparts of universally quantified queries formulated in relational calculi. We introduce Pseudo Tuple Calculus in the ranked model which is further used to show mutual definability of the various forms of divisions presented in the paper.
Název v anglickém jazyce
Relational division in rank-aware databases
Popis výsledku anglicky
We present a survey of existing approaches to relational division in rank-aware databases, discuss issues of the present approaches, and outline generalizations of several types of classic division-like operations. We work in a model which generalizes the Codd model of data by considering tuples in relations annotated by ranks, indicating degrees to which tuples in relations match queries. The approach utilizes complete residuated lattices as the basic structures of degrees. We argue that unlike the classic model, relational divisions are fundamental operations which cannot in general be expressed by means of other operations. In addition, we compare the existing and proposed operations and identify those which are faithful counterparts of universally quantified queries formulated in relational calculi. We introduce Pseudo Tuple Calculus in the ranked model which is further used to show mutual definability of the various forms of divisions presented in the paper.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-11585S" target="_blank" >GA14-11585S: Relační podobnostní databáze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
366
Číslo periodika v rámci svazku
OCT
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
48-69
Kód UT WoS článku
000380068900004
EID výsledku v databázi Scopus
2-s2.0-84973341478