Evaluating Association Rules in Boolean Matrix Factorization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33160927" target="_blank" >RIV/61989592:15310/16:33160927 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating Association Rules in Boolean Matrix Factorization
Popis výsledku v původním jazyce
Association rules, or association rule mining, is a well-established and popular method of data mining and machine learning successfully applied in many different areas since mid-nineties. Association rules form a ground of the Asso algorithm for discovery of the first (presumably most important) factors in Boolean matrix factorization. In Asso, the confidence parameter of association rules heavily influences the quality of factorization. However, association rules, in a more general form, appear already in GUHA, a knowledge discovery method developed since mid-sixties. In the paper, we evaluate the use of various (other) types of association rules from GUHA in Asso and, from the other side, a possible utilization of (particular) association rules in other Boolean matrix factorization algorithms not based on the rules. We compare the quality of factorization produced by the modified algorithms with those produced by the original algorithms.
Název v anglickém jazyce
Evaluating Association Rules in Boolean Matrix Factorization
Popis výsledku anglicky
Association rules, or association rule mining, is a well-established and popular method of data mining and machine learning successfully applied in many different areas since mid-nineties. Association rules form a ground of the Asso algorithm for discovery of the first (presumably most important) factors in Boolean matrix factorization. In Asso, the confidence parameter of association rules heavily influences the quality of factorization. However, association rules, in a more general form, appear already in GUHA, a knowledge discovery method developed since mid-sixties. In the paper, we evaluate the use of various (other) types of association rules from GUHA in Asso and, from the other side, a possible utilization of (particular) association rules in other Boolean matrix factorization algorithms not based on the rules. We compare the quality of factorization produced by the modified algorithms with those produced by the original algorithms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-17899S" target="_blank" >GA15-17899S: Rozklady matic s booleovskými a ordinálními daty: teorie a algoritmy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th ITAT Conference Information Technologies - Applications and Theory, ITAT 2016, Workshop on Computational Intelligence and Data Mining, WCIDM 2016
ISBN
978-1-5370-1674-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
147-154
Název nakladatele
CreateSpace Independent Publishing Platform
Místo vydání
Bratislava
Místo konání akce
Tatranské Matliare
Datum konání akce
15. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—