Computing Interval Weights for Incomplete Pairwise-Comparison Matrices of Large Dimension—A Weak-Consistency-Based Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73580833" target="_blank" >RIV/61989592:15310/17:73580833 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TFUZZ.2016.2633364" target="_blank" >http://dx.doi.org/10.1109/TFUZZ.2016.2633364</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2016.2633364" target="_blank" >10.1109/TFUZZ.2016.2633364</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computing Interval Weights for Incomplete Pairwise-Comparison Matrices of Large Dimension—A Weak-Consistency-Based Approach
Popis výsledku v původním jazyce
Multiple-criteria decision making and evaluation problems dealing with a large number of objects are very demanding, particularly when the use of pairwise-comparison (PC) techniques is required. A major drawback arises when it is not possible to obtain all the PCs, due to time or cost limitations, or to split the given problem into smaller subproblems. In such cases, two tools are needed to find acceptable weights of objects: an efficient method for partially filling a pairwise-comparison matrix (PCM) and a suitable method for deriving weights from this incomplete PCM. This paper presents a novel interactive algorithm for large-dimensional problems guided by two main ideas: the sequential optimal choice of the PCs to be performed and the concept of weak consistency. The proposed solution significantly reduces the number of needed PCs by adding information implied by the weak consistency after the input of each PC (providing sets of feasible values for all missing PCs). Interval weights of objects are computed from the resulting incomplete weakly consistent PCM adapting the methodology for calculating fuzzy weights from fuzzy PCMs. The computed weight intervals, thus, cover all possible weakly consistent completions of the incomplete PCM. The algorithm works both with Saaty's PCMs and fuzzy preference relations. The performance of the algorithm is illustrated by a numerical example and a real-life case study. The performed simulation demonstrates that the proposed algorithm is capable of reducing the number of PCs required in PCMs of dimension 15 and greater by more than 60% on average.
Název v anglickém jazyce
Computing Interval Weights for Incomplete Pairwise-Comparison Matrices of Large Dimension—A Weak-Consistency-Based Approach
Popis výsledku anglicky
Multiple-criteria decision making and evaluation problems dealing with a large number of objects are very demanding, particularly when the use of pairwise-comparison (PC) techniques is required. A major drawback arises when it is not possible to obtain all the PCs, due to time or cost limitations, or to split the given problem into smaller subproblems. In such cases, two tools are needed to find acceptable weights of objects: an efficient method for partially filling a pairwise-comparison matrix (PCM) and a suitable method for deriving weights from this incomplete PCM. This paper presents a novel interactive algorithm for large-dimensional problems guided by two main ideas: the sequential optimal choice of the PCs to be performed and the concept of weak consistency. The proposed solution significantly reduces the number of needed PCs by adding information implied by the weak consistency after the input of each PC (providing sets of feasible values for all missing PCs). Interval weights of objects are computed from the resulting incomplete weakly consistent PCM adapting the methodology for calculating fuzzy weights from fuzzy PCMs. The computed weight intervals, thus, cover all possible weakly consistent completions of the incomplete PCM. The algorithm works both with Saaty's PCMs and fuzzy preference relations. The performance of the algorithm is illustrated by a numerical example and a real-life case study. The performed simulation demonstrates that the proposed algorithm is capable of reducing the number of PCs required in PCMs of dimension 15 and greater by more than 60% on average.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1714-1728
Kód UT WoS článku
000417559300026
EID výsledku v databázi Scopus
—