Exploratory tools for outlier detection in compositional data with structural zeros
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73582557" target="_blank" >RIV/61989592:15310/17:73582557 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/02664763.2016.1182135" target="_blank" >http://dx.doi.org/10.1080/02664763.2016.1182135</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2016.1182135" target="_blank" >10.1080/02664763.2016.1182135</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploratory tools for outlier detection in compositional data with structural zeros
Popis výsledku v původním jazyce
The analysis of compositional data using the log-ratio approach is based on ratios between the compositional parts. Zeros in the parts thus cause serious difficulties for the analysis. This is a particular problem in case of structural zeros, which cannot be simply replaced by a non-zero value as it is done, e.g. for values below detection limit or missing values. Instead, zeros to be incorporated into further statistical processing. The focus is on exploratory tools for identifying outliers in compositional data sets with structural zeros. For this purpose, Mahalanobis distances are estimated, computed either directly for subcompositions determined by their zero patterns, or by using imputation to improve the efficiency of the estimates, and then proceed to the subcompositional and subgroup level. For this approach, new theory is formulated that allows to estimate covariances for imputed compositional data and to apply estimations on subgroups using parts of this covariance matrix. Moreover, the zero pattern structure is analyzed using principal component analysis for binary data to achieve a comprehensive view of the overall multivariate data structure. The proposed tools are applied to larger compositional data sets from official statistics, where the need for an appropriate treatment of zeros is obvious.
Název v anglickém jazyce
Exploratory tools for outlier detection in compositional data with structural zeros
Popis výsledku anglicky
The analysis of compositional data using the log-ratio approach is based on ratios between the compositional parts. Zeros in the parts thus cause serious difficulties for the analysis. This is a particular problem in case of structural zeros, which cannot be simply replaced by a non-zero value as it is done, e.g. for values below detection limit or missing values. Instead, zeros to be incorporated into further statistical processing. The focus is on exploratory tools for identifying outliers in compositional data sets with structural zeros. For this purpose, Mahalanobis distances are estimated, computed either directly for subcompositions determined by their zero patterns, or by using imputation to improve the efficiency of the estimates, and then proceed to the subcompositional and subgroup level. For this approach, new theory is formulated that allows to estimate covariances for imputed compositional data and to apply estimations on subgroups using parts of this covariance matrix. Moreover, the zero pattern structure is analyzed using principal component analysis for binary data to achieve a comprehensive view of the overall multivariate data structure. The proposed tools are applied to larger compositional data sets from official statistics, where the need for an appropriate treatment of zeros is obvious.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Statistics
ISSN
0266-4763
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
734-752
Kód UT WoS článku
000396038500011
EID výsledku v databázi Scopus
—