Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A new method for correlation analysis of compositional (environmental) data – a worked example

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73582563" target="_blank" >RIV/61989592:15310/17:73582563 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969717314675" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969717314675</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2017.06.063" target="_blank" >10.1016/j.scitotenv.2017.06.063</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A new method for correlation analysis of compositional (environmental) data – a worked example

  • Popis výsledku v původním jazyce

    Most data in environmental sciences and geochemistry are compositional. Already the unit used to report the data (e.g., μg/l, mg/kg,wt%) implies that the analytical results for each element are not free to vary independently of the other measured variables. This is often neglected in statistical analysis, where a simple log-transformation of the single variables is insufficient to put the data into an acceptable geometry. This is also important for bivariate data analysis and for correlation analysis, for which the data need to be appropriately log-ratio transformed. A newapproach based on the isometric log-ratio (ilr) transformation, leading to so-called symmetric coordinates, is presented here. Summarizing the correlations in a heat-map gives a powerful tool for bivariate data analysis. Here an application of the new method using a data set from a regional geochemical mapping project based on soil O and C horizon samples is demonstrated. Differences to ‘classical’ correlation analysis based on log-transformed data are highlighted. The fact that some expected strong positive correlations appear and remain unchanged even following a log-ratio transformation has probably led to the misconception that the special nature of compositional data can be ignored when working with trace elements. The example dataset is employed to demonstrate that using ‘classical’ correlation analysis and plotting XY diagrams, scatterplots, based on the original or simply log-transformed data can easily lead to severe misinterpretations of the relationships between elements.

  • Název v anglickém jazyce

    A new method for correlation analysis of compositional (environmental) data – a worked example

  • Popis výsledku anglicky

    Most data in environmental sciences and geochemistry are compositional. Already the unit used to report the data (e.g., μg/l, mg/kg,wt%) implies that the analytical results for each element are not free to vary independently of the other measured variables. This is often neglected in statistical analysis, where a simple log-transformation of the single variables is insufficient to put the data into an acceptable geometry. This is also important for bivariate data analysis and for correlation analysis, for which the data need to be appropriately log-ratio transformed. A newapproach based on the isometric log-ratio (ilr) transformation, leading to so-called symmetric coordinates, is presented here. Summarizing the correlations in a heat-map gives a powerful tool for bivariate data analysis. Here an application of the new method using a data set from a regional geochemical mapping project based on soil O and C horizon samples is demonstrated. Differences to ‘classical’ correlation analysis based on log-transformed data are highlighted. The fact that some expected strong positive correlations appear and remain unchanged even following a log-ratio transformation has probably led to the misconception that the special nature of compositional data can be ignored when working with trace elements. The example dataset is employed to demonstrate that using ‘classical’ correlation analysis and plotting XY diagrams, scatterplots, based on the original or simply log-transformed data can easily lead to severe misinterpretations of the relationships between elements.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

  • Svazek periodika

    607-608

  • Číslo periodika v rámci svazku

    DEC

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

    965-971

  • Kód UT WoS článku

    000408755300096

  • EID výsledku v databázi Scopus