Transitions Between Fuzzified Aggregation Operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583533" target="_blank" >RIV/61989592:15310/17:73583533 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15810/17:73583533
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transitions Between Fuzzified Aggregation Operators
Popis výsledku v původním jazyce
An important problem in the multiple-criteria decision-making is how to combine multiple evaluations according to the individual criteria into the overall evaluation. Many aggregation methods have been developed for this task. When the evaluations are expressed by fuzzy numbers, fuzzified versions of these methods can be used. There is usually a trade-off between the versatility of the aggregation operator and the number of its parameters that have to be set. Setting correct parameters can pose a problem for the decision-maker in case of a more complex aggregation method. This paper proposes to overcome the problem in the following way - instead of creating a complex model directly, a simpler model, which represents only a rough approximation, is used first. In the next step, the model is refined and the original simple aggregation method is replaced by a more complex one. The parameters for the new aggregation method are derived automatically. Two algorithms are presented in the paper for this task - the first one derives a FNV-fuzzy measure (fuzzy-number-valued fuzzy measure) for the fuzzified Choquet integral, the latter one proposes a fuzzy rule base for the fuzzy expert system.
Název v anglickém jazyce
Transitions Between Fuzzified Aggregation Operators
Popis výsledku anglicky
An important problem in the multiple-criteria decision-making is how to combine multiple evaluations according to the individual criteria into the overall evaluation. Many aggregation methods have been developed for this task. When the evaluations are expressed by fuzzy numbers, fuzzified versions of these methods can be used. There is usually a trade-off between the versatility of the aggregation operator and the number of its parameters that have to be set. Setting correct parameters can pose a problem for the decision-maker in case of a more complex aggregation method. This paper proposes to overcome the problem in the following way - instead of creating a complex model directly, a simpler model, which represents only a rough approximation, is used first. In the next step, the model is refined and the original simple aggregation method is replaced by a more complex one. The parameters for the new aggregation method are derived automatically. Two algorithms are presented in the paper for this task - the first one derives a FNV-fuzzy measure (fuzzy-number-valued fuzzy measure) for the fuzzified Choquet integral, the latter one proposes a fuzzy rule base for the fuzzy expert system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-02424S" target="_blank" >GA14-02424S: Metody operačního výzkumu pro podporu rozhodování v podmínkách neurčitosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multiple-Valued Logic and Soft Computing
ISSN
1542-3980
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
505-529
Kód UT WoS článku
000415668000008
EID výsledku v databázi Scopus
2-s2.0-85034114077