Quantum Measurements Generating Structures of Numerical Events
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587183" target="_blank" >RIV/61989592:15310/18:73587183 - isvavai.cz</a>
Výsledek na webu
<a href="https://file.scirp.org/pdf/JAMP_2018052114332952.pdf" target="_blank" >https://file.scirp.org/pdf/JAMP_2018052114332952.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4236/jamp.2018.65085" target="_blank" >10.4236/jamp.2018.65085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum Measurements Generating Structures of Numerical Events
Popis výsledku v původním jazyce
Let S be a set of states of a physical system and the probability of an occurrence of an event when the system is in state . The function p from S to is called a numerical event, multidimensional probability or, more precisely, S-probability. If a set of numerical events is ordered by the order of real functions one obtains a partial ordered set P in which the sum and difference of S-probabilities are related to their order within P. According to the structure that arises, this further opens up the opportunity to decide whether one deals with a quantum mechanical situation or a classical one. In this paper we focus on the situation that P is generated by a given set of measurements, i.e. S-probabilities, without assuming that these S-probabilities can be complemented by further measurements or are embeddable into Boolean algebras, assumptions that were made in most of the preceding papers. In particular, we study the generation by S-probabilities that can only assume the values 0 and 1, thus dealing with so called concrete logics. We characterize these logics under several suppositions that might occur with measurements and generalize our findings to arbitrary S-probabilities, this way providing a possibility to distinguish between potential classical and quantum situations and the fact that an obtained structure might not be sufficient for an appropriate decision. Moreover, we provide some explanatory examples from physics.
Název v anglickém jazyce
Quantum Measurements Generating Structures of Numerical Events
Popis výsledku anglicky
Let S be a set of states of a physical system and the probability of an occurrence of an event when the system is in state . The function p from S to is called a numerical event, multidimensional probability or, more precisely, S-probability. If a set of numerical events is ordered by the order of real functions one obtains a partial ordered set P in which the sum and difference of S-probabilities are related to their order within P. According to the structure that arises, this further opens up the opportunity to decide whether one deals with a quantum mechanical situation or a classical one. In this paper we focus on the situation that P is generated by a given set of measurements, i.e. S-probabilities, without assuming that these S-probabilities can be complemented by further measurements or are embeddable into Boolean algebras, assumptions that were made in most of the preceding papers. In particular, we study the generation by S-probabilities that can only assume the values 0 and 1, thus dealing with so called concrete logics. We characterize these logics under several suppositions that might occur with measurements and generalize our findings to arbitrary S-probabilities, this way providing a possibility to distinguish between potential classical and quantum situations and the fact that an obtained structure might not be sufficient for an appropriate decision. Moreover, we provide some explanatory examples from physics.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Mathematics and Physics
ISSN
2327-4352
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
982-996
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—