Algebraic Semantics for One-Variable Lattice-Valued Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560680" target="_blank" >RIV/67985807:_____/22:00560680 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.collegepublications.co.uk/aiml/?00011" target="_blank" >http://www.collegepublications.co.uk/aiml/?00011</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic Semantics for One-Variable Lattice-Valued Logics
Popis výsledku v původním jazyce
The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property
Název v anglickém jazyce
Algebraic Semantics for One-Variable Lattice-Valued Logics
Popis výsledku anglicky
The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01137S" target="_blank" >GA22-01137S: Metamatematika substrukturálních modálních logik</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Modal Logic. Volume 14
ISBN
978-1-84890-413-2
ISSN
—
e-ISSN
—
Počet stran výsledku
22
Strana od-do
237-257
Název nakladatele
College Publications
Místo vydání
London
Místo konání akce
Rennes
Datum konání akce
22. 8. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—