Nonassociative Substructural Logics and Their Semilinear Extensions: Axiomatization and Completeness Properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00395361" target="_blank" >RIV/67985556:_____/13:00395361 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/13:00395361
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S1755020313000099" target="_blank" >http://dx.doi.org/10.1017/S1755020313000099</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1755020313000099" target="_blank" >10.1017/S1755020313000099</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonassociative Substructural Logics and Their Semilinear Extensions: Axiomatization and Completeness Properties
Popis výsledku v původním jazyce
Substructural logics extending the full Lambek calculus FL have largely benefited from a systematical algebraic approach based on the study of their algebraic counterparts: residuated lattices. Recently, a nonassociative generalization of FL (which we call SL) has been studied by Galatos and Ono as the logic of lattice-ordered residuated unital groupoids. This paper is based on an alternative Hilbert-style presentation for SL which is almost MP-based. This presentation is then used to obtain, in a uniform way applicable to most (both associative and nonassociative) substructural logics, a form of local deduction theorem, description of filter generation, and proper forms of generalized disjunctions. A special stress is put on semilinear substructural logics (i.e., logics complete with respect to linearly ordered algebras). Axiomatizations of the weakest semilinear logic over SL and other prominent substructural logics are provided and their completeness with respect to chains defined o
Název v anglickém jazyce
Nonassociative Substructural Logics and Their Semilinear Extensions: Axiomatization and Completeness Properties
Popis výsledku anglicky
Substructural logics extending the full Lambek calculus FL have largely benefited from a systematical algebraic approach based on the study of their algebraic counterparts: residuated lattices. Recently, a nonassociative generalization of FL (which we call SL) has been studied by Galatos and Ono as the logic of lattice-ordered residuated unital groupoids. This paper is based on an alternative Hilbert-style presentation for SL which is almost MP-based. This presentation is then used to obtain, in a uniform way applicable to most (both associative and nonassociative) substructural logics, a form of local deduction theorem, description of filter generation, and proper forms of generalized disjunctions. A special stress is put on semilinear substructural logics (i.e., logics complete with respect to linearly ordered algebras). Axiomatizations of the weakest semilinear logic over SL and other prominent substructural logics are provided and their completeness with respect to chains defined o
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Review of Symbolic Logic
ISSN
1755-0203
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
30
Strana od-do
394-423
Kód UT WoS článku
000323167200002
EID výsledku v databázi Scopus
—