Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum Measurements Generating Structures of Numerical Events

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587183" target="_blank" >RIV/61989592:15310/18:73587183 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://file.scirp.org/pdf/JAMP_2018052114332952.pdf" target="_blank" >https://file.scirp.org/pdf/JAMP_2018052114332952.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4236/jamp.2018.65085" target="_blank" >10.4236/jamp.2018.65085</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum Measurements Generating Structures of Numerical Events

  • Popis výsledku v původním jazyce

    Let S be a set of states of a physical system and the probability of an occurrence of an event when the system is in state . The function p from S to is called a numerical event, multidimensional probability or, more precisely, S-probability. If a set of numerical events is ordered by the order of real functions one obtains a partial ordered set P in which the sum and difference of S-probabilities are related to their order within P. According to the structure that arises, this further opens up the opportunity to decide whether one deals with a quantum mechanical situation or a classical one. In this paper we focus on the situation that P is generated by a given set of measurements, i.e. S-probabilities, without assuming that these S-probabilities can be complemented by further measurements or are embeddable into Boolean algebras, assumptions that were made in most of the preceding papers. In particular, we study the generation by S-probabilities that can only assume the values 0 and 1, thus dealing with so called concrete logics. We characterize these logics under several suppositions that might occur with measurements and generalize our findings to arbitrary S-probabilities, this way providing a possibility to distinguish between potential classical and quantum situations and the fact that an obtained structure might not be sufficient for an appropriate decision. Moreover, we provide some explanatory examples from physics.

  • Název v anglickém jazyce

    Quantum Measurements Generating Structures of Numerical Events

  • Popis výsledku anglicky

    Let S be a set of states of a physical system and the probability of an occurrence of an event when the system is in state . The function p from S to is called a numerical event, multidimensional probability or, more precisely, S-probability. If a set of numerical events is ordered by the order of real functions one obtains a partial ordered set P in which the sum and difference of S-probabilities are related to their order within P. According to the structure that arises, this further opens up the opportunity to decide whether one deals with a quantum mechanical situation or a classical one. In this paper we focus on the situation that P is generated by a given set of measurements, i.e. S-probabilities, without assuming that these S-probabilities can be complemented by further measurements or are embeddable into Boolean algebras, assumptions that were made in most of the preceding papers. In particular, we study the generation by S-probabilities that can only assume the values 0 and 1, thus dealing with so called concrete logics. We characterize these logics under several suppositions that might occur with measurements and generalize our findings to arbitrary S-probabilities, this way providing a possibility to distinguish between potential classical and quantum situations and the fact that an obtained structure might not be sufficient for an appropriate decision. Moreover, we provide some explanatory examples from physics.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Applied Mathematics and Physics

  • ISSN

    2327-4352

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    982-996

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus