A calculus for containment of fuzzy attributes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73588190" target="_blank" >RIV/61989592:15310/18:73588190 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00500-017-2972-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs00500-017-2972-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-017-2972-1" target="_blank" >10.1007/s00500-017-2972-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A calculus for containment of fuzzy attributes
Popis výsledku v původním jazyce
Dependencies in data describing objects and their attributes represent a key topic in understanding relational data. In this paper, we examine certain dependencies of data described by fuzzy attributes such as green or high performance, i.e. attributes which apply to objects to certain degrees. Such attributes subsume Boolean attributes as a particular case. We utilize the framework of residuated structures of truth degrees as developed in modern fuzzy logic and examine several fundamental problems for our dependencies. These include connections to existing dependencies for fuzzy as well as Boolean attributes, connections to interior- and closure-like structures, definition and properties of semantic entailment including an efficient check of entailment, various model-theoretical properties, a logical calculus of the dependencies inspired by the well-known Armstrong rules with its ordinary-style as well as graded-style syntactico-semantical completeness, fully informative sets of all dependencies that are valid in given data including a constructive description of minimal such sets, as well as various other problems.
Název v anglickém jazyce
A calculus for containment of fuzzy attributes
Popis výsledku anglicky
Dependencies in data describing objects and their attributes represent a key topic in understanding relational data. In this paper, we examine certain dependencies of data described by fuzzy attributes such as green or high performance, i.e. attributes which apply to objects to certain degrees. Such attributes subsume Boolean attributes as a particular case. We utilize the framework of residuated structures of truth degrees as developed in modern fuzzy logic and examine several fundamental problems for our dependencies. These include connections to existing dependencies for fuzzy as well as Boolean attributes, connections to interior- and closure-like structures, definition and properties of semantic entailment including an efficient check of entailment, various model-theoretical properties, a logical calculus of the dependencies inspired by the well-known Armstrong rules with its ordinary-style as well as graded-style syntactico-semantical completeness, fully informative sets of all dependencies that are valid in given data including a constructive description of minimal such sets, as well as various other problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-17899S" target="_blank" >GA15-17899S: Rozklady matic s booleovskými a ordinálními daty: teorie a algoritmy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SOFT COMPUTING
ISSN
1432-7643
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
6299-6310
Kód UT WoS článku
000444010500003
EID výsledku v databázi Scopus
2-s2.0-85037694253