Attribute dependencies for data with grades I.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33161530" target="_blank" >RIV/61989592:15310/16:33161530 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/03081079.2016.1205711" target="_blank" >http://dx.doi.org/10.1080/03081079.2016.1205711</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081079.2016.1205711" target="_blank" >10.1080/03081079.2016.1205711</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Attribute dependencies for data with grades I.
Popis výsledku v původním jazyce
This paper examines attribute dependencies in data that involve grades, such as a grade to which an object is red or a grade to which two objects are similar. We thus extend the classical agenda by allowing graded, or "fuzzy", attributes instead of Boolean, yes-or-no attributes in case of attribute implications, and allowing approximate match based on degrees of similarity instead of exact match based on equality in case of functional dependencies. In a sense, we move from bivalence, inherently present in the now-available theories of dependencies, to a more flexible setting that involves grades. Such a shift has far-reaching consequences. We argue that a reasonable theory of dependencies may be developed by making use of mathematical fuzzy logic, a recently developed many-valued logic. Namely, the theory of dependencies is then based on a solid logic calculus the same way classical dependencies are based on classical logic. For instance, rather than handling degrees of similarity in an ad hoc manner, we consistently treat them as truth values, the same way as true (match) and false (mismatch) are treated in classical theories. In addition, several notions intuitively embraced in the presence of grades, such as a degree of validity of a particular dependence or a degree of entailment, naturally emerge and receive a conceptually clean treatment in the presented approach. In the first part of this two-part paper, we discuss motivations, provide basic notions of syntax and semantics and develop basic results which include entailment of dependencies, associated closure structures and a logic of dependencies with two versions of completeness theorem.
Název v anglickém jazyce
Attribute dependencies for data with grades I.
Popis výsledku anglicky
This paper examines attribute dependencies in data that involve grades, such as a grade to which an object is red or a grade to which two objects are similar. We thus extend the classical agenda by allowing graded, or "fuzzy", attributes instead of Boolean, yes-or-no attributes in case of attribute implications, and allowing approximate match based on degrees of similarity instead of exact match based on equality in case of functional dependencies. In a sense, we move from bivalence, inherently present in the now-available theories of dependencies, to a more flexible setting that involves grades. Such a shift has far-reaching consequences. We argue that a reasonable theory of dependencies may be developed by making use of mathematical fuzzy logic, a recently developed many-valued logic. Namely, the theory of dependencies is then based on a solid logic calculus the same way classical dependencies are based on classical logic. For instance, rather than handling degrees of similarity in an ad hoc manner, we consistently treat them as truth values, the same way as true (match) and false (mismatch) are treated in classical theories. In addition, several notions intuitively embraced in the presence of grades, such as a degree of validity of a particular dependence or a degree of entailment, naturally emerge and receive a conceptually clean treatment in the presented approach. In the first part of this two-part paper, we discuss motivations, provide basic notions of syntax and semantics and develop basic results which include entailment of dependencies, associated closure structures and a logic of dependencies with two versions of completeness theorem.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Rozklady matic s binárními a ordinálními daty: teorie, algoritmy, složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of General Systems
ISSN
0308-1079
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
7-8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
864-888
Kód UT WoS článku
000393213500010
EID výsledku v databázi Scopus
2-s2.0-85007016052