Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Attribute dependencies for data with grades I.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33161530" target="_blank" >RIV/61989592:15310/16:33161530 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1080/03081079.2016.1205711" target="_blank" >http://dx.doi.org/10.1080/03081079.2016.1205711</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03081079.2016.1205711" target="_blank" >10.1080/03081079.2016.1205711</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Attribute dependencies for data with grades I.

  • Popis výsledku v původním jazyce

    This paper examines attribute dependencies in data that involve grades, such as a grade to which an object is red or a grade to which two objects are similar. We thus extend the classical agenda by allowing graded, or "fuzzy", attributes instead of Boolean, yes-or-no attributes in case of attribute implications, and allowing approximate match based on degrees of similarity instead of exact match based on equality in case of functional dependencies. In a sense, we move from bivalence, inherently present in the now-available theories of dependencies, to a more flexible setting that involves grades. Such a shift has far-reaching consequences. We argue that a reasonable theory of dependencies may be developed by making use of mathematical fuzzy logic, a recently developed many-valued logic. Namely, the theory of dependencies is then based on a solid logic calculus the same way classical dependencies are based on classical logic. For instance, rather than handling degrees of similarity in an ad hoc manner, we consistently treat them as truth values, the same way as true (match) and false (mismatch) are treated in classical theories. In addition, several notions intuitively embraced in the presence of grades, such as a degree of validity of a particular dependence or a degree of entailment, naturally emerge and receive a conceptually clean treatment in the presented approach. In the first part of this two-part paper, we discuss motivations, provide basic notions of syntax and semantics and develop basic results which include entailment of dependencies, associated closure structures and a logic of dependencies with two versions of completeness theorem.

  • Název v anglickém jazyce

    Attribute dependencies for data with grades I.

  • Popis výsledku anglicky

    This paper examines attribute dependencies in data that involve grades, such as a grade to which an object is red or a grade to which two objects are similar. We thus extend the classical agenda by allowing graded, or "fuzzy", attributes instead of Boolean, yes-or-no attributes in case of attribute implications, and allowing approximate match based on degrees of similarity instead of exact match based on equality in case of functional dependencies. In a sense, we move from bivalence, inherently present in the now-available theories of dependencies, to a more flexible setting that involves grades. Such a shift has far-reaching consequences. We argue that a reasonable theory of dependencies may be developed by making use of mathematical fuzzy logic, a recently developed many-valued logic. Namely, the theory of dependencies is then based on a solid logic calculus the same way classical dependencies are based on classical logic. For instance, rather than handling degrees of similarity in an ad hoc manner, we consistently treat them as truth values, the same way as true (match) and false (mismatch) are treated in classical theories. In addition, several notions intuitively embraced in the presence of grades, such as a degree of validity of a particular dependence or a degree of entailment, naturally emerge and receive a conceptually clean treatment in the presented approach. In the first part of this two-part paper, we discuss motivations, provide basic notions of syntax and semantics and develop basic results which include entailment of dependencies, associated closure structures and a logic of dependencies with two versions of completeness theorem.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Rozklady matic s binárními a ordinálními daty: teorie, algoritmy, složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of General Systems

  • ISSN

    0308-1079

  • e-ISSN

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    7-8

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    25

  • Strana od-do

    864-888

  • Kód UT WoS článku

    000393213500010

  • EID výsledku v databázi Scopus

    2-s2.0-85007016052