Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Handling noise in Boolean matrix factorization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73588398" target="_blank" >RIV/61989592:15310/18:73588398 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0888613X17305029" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X17305029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijar.2018.03.006" target="_blank" >10.1016/j.ijar.2018.03.006</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Handling noise in Boolean matrix factorization

  • Popis výsledku v původním jazyce

    One of the challenges presented by Boolean matrix factorization consists in what became known as the ability to deal with noise in data. In this paper, we critically examine existing considerations regarding noise, reported results regarding various algorithms&apos; ability to deal with noise, and approaches used to evaluate this ability. We argue that the current understanding is underdeveloped in several respects and, in particular, that the present way to assess the ability to handle noise in data is deficient. We provide a new, quantitative way to assess this ability. Our method is based on a common-sense definition of robustness requiring that the factorizations computed from data should not be affected much by varying the noise in the data. We present an experimental evaluation of several algorithms, and compare the results to the observations available in the literature. The experiments reveal important properties of these algorithms as regards handling noise. In addition to providing methodological justification of some properties claimed in the literature without proper justification, they reveal properties which were not reported as well as properties which counter certain claims made in the literature. Importantly, our approach reveals a line separating robust-to-noise from sensitive-to-noise algorithms, which has not been revealed by the previous approaches. We conclude by outlining open problems to which the present considerations and experiments lead.

  • Název v anglickém jazyce

    Handling noise in Boolean matrix factorization

  • Popis výsledku anglicky

    One of the challenges presented by Boolean matrix factorization consists in what became known as the ability to deal with noise in data. In this paper, we critically examine existing considerations regarding noise, reported results regarding various algorithms&apos; ability to deal with noise, and approaches used to evaluate this ability. We argue that the current understanding is underdeveloped in several respects and, in particular, that the present way to assess the ability to handle noise in data is deficient. We provide a new, quantitative way to assess this ability. Our method is based on a common-sense definition of robustness requiring that the factorizations computed from data should not be affected much by varying the noise in the data. We present an experimental evaluation of several algorithms, and compare the results to the observations available in the literature. The experiments reveal important properties of these algorithms as regards handling noise. In addition to providing methodological justification of some properties claimed in the literature without proper justification, they reveal properties which were not reported as well as properties which counter certain claims made in the literature. Importantly, our approach reveals a line separating robust-to-noise from sensitive-to-noise algorithms, which has not been revealed by the previous approaches. We conclude by outlining open problems to which the present considerations and experiments lead.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-17899S" target="_blank" >GA15-17899S: Rozklady matic s booleovskými a ordinálními daty: teorie a algoritmy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING

  • ISSN

    0888-613X

  • e-ISSN

  • Svazek periodika

    96

  • Číslo periodika v rámci svazku

    MAY

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    78-94

  • Kód UT WoS článku

    000430902700007

  • EID výsledku v databázi Scopus

    2-s2.0-85044148679