Handling noise in Boolean matrix factorization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73582745" target="_blank" >RIV/61989592:15310/17:73582745 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.24963/ijcai.2017/198" target="_blank" >http://dx.doi.org/10.24963/ijcai.2017/198</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2017/198" target="_blank" >10.24963/ijcai.2017/198</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Handling noise in Boolean matrix factorization
Popis výsledku v původním jazyce
We critically examine and point out weaknesses of the existing considerations in Boolean matrix factorization (BMF) regarding noise and the algorithms' ability to deal with noise. We argue that the current understanding is underdeveloped and that the current approaches are missing an important aspect. We provide a new, quantitative way to assess the ability of an algorithm to handle noise. Our approach is based on a common-sense definition of robustness requiring that the computed factorizations should not be affected much by varying the noise in data. We present an experimental evaluation of several existing algorithms and compare the results to the observations available in the literature. In addition to providing justification of some properties claimed in the literature without proper justification, our experiments reveal properties which were not reported as well as properties which counter certain claims made in the literature. Importantly, our approach reveals a line separating robust-to-noise from sensitive-to-noise algorithms, which has not been revealed by the previous approaches.
Název v anglickém jazyce
Handling noise in Boolean matrix factorization
Popis výsledku anglicky
We critically examine and point out weaknesses of the existing considerations in Boolean matrix factorization (BMF) regarding noise and the algorithms' ability to deal with noise. We argue that the current understanding is underdeveloped and that the current approaches are missing an important aspect. We provide a new, quantitative way to assess the ability of an algorithm to handle noise. Our approach is based on a common-sense definition of robustness requiring that the computed factorizations should not be affected much by varying the noise in data. We present an experimental evaluation of several existing algorithms and compare the results to the observations available in the literature. In addition to providing justification of some properties claimed in the literature without proper justification, our experiments reveal properties which were not reported as well as properties which counter certain claims made in the literature. Importantly, our approach reveals a line separating robust-to-noise from sensitive-to-noise algorithms, which has not been revealed by the previous approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-17899S" target="_blank" >GA15-17899S: Rozklady matic s booleovskými a ordinálními daty: teorie a algoritmy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
26th International Joint Conference on Artificial Intelligence, IJCAI 2017
ISBN
978-0-9992411-0-3
ISSN
1045-0823
e-ISSN
neuvedeno
Počet stran výsledku
7
Strana od-do
1433-1439
Název nakladatele
International Joint Conferences on Artificial Intelligence
Místo vydání
Melbourne
Místo konání akce
Melbourne
Datum konání akce
19. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—