Factorization of Matrices With Grades With Overcovering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627222" target="_blank" >RIV/61989592:15310/24:73627222 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333207109" target="_blank" >https://obd.upol.cz/id_publ/333207109</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2023.3330760" target="_blank" >10.1109/TFUZZ.2023.3330760</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Factorization of Matrices With Grades With Overcovering
Popis výsledku v původním jazyce
We present a novel algorithm for factorization of matrices with grades or, equivalently, for decomposition of fuzzy relations. The algorithm is inspired by a recent factorization method for Boolean matrices and develops two ideas in the setting of ordinal attributes. First, it uses formal concepts associated with the factorized matrix, or fuzzy relation, as essential components around which factors are built. Second, it steps back when computing new factors to check whether some computed factors may be eliminated or improved given the subsequently generated factors. The new algorithm thus uses convenient properties of formal concepts utilized by previous factorization algorithms. Still, unlike the previous algorithms, our algorithm allows for more general and therefore more precise factorizations due to a possible overcovering of the input data, which our new algorithm admits. We provide an experimental evaluation of the new algorithm and compare it to some existing algorithms for factorization of data with grades. The evaluation reveals that our new algorithm outperforms the current algorithms in terms of quality of factorization. We also present observations and improvements for factorization of Boolean matrices. We conclude with a discussion regarding open research topics.
Název v anglickém jazyce
Factorization of Matrices With Grades With Overcovering
Popis výsledku anglicky
We present a novel algorithm for factorization of matrices with grades or, equivalently, for decomposition of fuzzy relations. The algorithm is inspired by a recent factorization method for Boolean matrices and develops two ideas in the setting of ordinal attributes. First, it uses formal concepts associated with the factorized matrix, or fuzzy relation, as essential components around which factors are built. Second, it steps back when computing new factors to check whether some computed factors may be eliminated or improved given the subsequently generated factors. The new algorithm thus uses convenient properties of formal concepts utilized by previous factorization algorithms. Still, unlike the previous algorithms, our algorithm allows for more general and therefore more precise factorizations due to a possible overcovering of the input data, which our new algorithm admits. We provide an experimental evaluation of the new algorithm and compare it to some existing algorithms for factorization of data with grades. The evaluation reveals that our new algorithm outperforms the current algorithms in terms of quality of factorization. We also present observations and improvements for factorization of Boolean matrices. We conclude with a discussion regarding open research topics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON FUZZY SYSTEMS
ISSN
1063-6706
e-ISSN
1941-0034
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1641-1652
Kód UT WoS článku
001196731700051
EID výsledku v databázi Scopus
2-s2.0-85177037889